6 research outputs found
Group classification of variable coefficient KdV-like equations
The exhaustive group classification of the class of KdV-like equations with
time-dependent coefficients is carried out using
equivalence based approach. A simple way for the construction of exact
solutions of KdV-like equations using equivalence transformations is described.Comment: 8 pages; minor misprints are corrected. arXiv admin note: substantial
text overlap with arXiv:1104.198
Exact Solutions of a Remarkable Fin Equation
A model "remarkable" fin equation is singled out from a class of nonlinear
(1+1)-dimensional fin equations. For this equation a number of exact solutions
are constructed by means of using both classical Lie algorithm and different
modern techniques (functional separation of variables, generalized conditional
symmetries, hidden symmetries etc).Comment: 6 page
Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities
A class of variable coefficient (1+1)-dimensional nonlinear
reaction-diffusion equations of the general form
is investigated. Different kinds of
equivalence groups are constructed including ones with transformations which
are nonlocal with respect to arbitrary elements. For the class under
consideration the complete group classification is performed with respect to
convenient equivalence groups (generalized extended and conditional ones) and
with respect to the set of all point transformations. Usage of different
equivalences and coefficient gauges plays the major role for simple and clear
formulation of the final results. The corresponding set of admissible
transformations is described exhaustively. Then, using the most direct method,
we classify local conservation laws. Some exact solutions are constructed by
the classical Lie method.Comment: 23 pages, minor misprints are correcte
Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source
A new approach to group classification problems and more general
investigations on transformational properties of classes of differential
equations is proposed. It is based on mappings between classes of differential
equations, generated by families of point transformations. A class of variable
coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the
general form () is studied from the
symmetry point of view in the framework of the approach proposed. The singular
subclass of the equations with is singled out. The group classifications
of the entire class, the singular subclass and their images are performed with
respect to both the corresponding (generalized extended) equivalence groups and
all point transformations. The set of admissible transformations of the imaged
class is exhaustively described in the general case . The procedure of
classification of nonclassical symmetries, which involves mappings between
classes of differential equations, is discussed. Wide families of new exact
solutions are also constructed for equations from the classes under
consideration by the classical method of Lie reductions and by generation of
new solutions from known ones for other equations with point transformations of
different kinds (such as additional equivalence transformations and mappings
between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica