90 research outputs found

    The maximum of the local time of a diffusion process in a drifted Brownian potential

    Full text link
    We consider a one-dimensional diffusion process XX in a (κ/2)(-\kappa/2)-drifted Brownian potential for κ0\kappa\neq 0. We are interested in the maximum of its local time, and study its almost sure asymptotic behaviour, which is proved to be different from the behaviour of the maximum local time of the transient random walk in random environment. We also obtain the convergence in law of the maximum local time of XX under the annealed law after suitable renormalization when κ1\kappa \geq 1. Moreover, we characterize all the upper and lower classes for the hitting times of XX, in the sense of Paul L\'evy, and provide laws of the iterated logarithm for the diffusion XX itself. To this aim, we use annealed technics.Comment: 38 pages, new version, merged with hal-00013040 (arXiv:math/0511053), with some additional result

    Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.)

    Get PDF
    Traits influencing plant water use eventually define the fitness of genotypes for specific rainfall environments. We assessed the response of several water use traits to vapour pressure deficit (VPD) in pearl millet (Pennisetum glaucum (L.) R.Br.) genotypes known to differ in drought adaptation mechanisms: PRLT 2/89–33 (terminal drought-adapted parent), H 77/833–2 (terminal drought-sensitive parent) and four near-isogenic lines introgressed with a terminal drought tolerance quantitative trait locus (QTL) from PRLT 2/89–33 (ICMR01029, ICMR01031, ICMR02042, and ICMR02044). Plant water use traits at various levels of plant organisation were evaluated in seven experiments in plants exposed either transiently or over the long term to different VPD regimes: biomass components, transpiration (water usage per time unit) and transpiration rate (TR) upon transient VPD increase (g H2O cm–2 h–1)), transpiration efficiency (g dry biomass per kg H2O transpired), leaf expansion rate (cm per thermal time unit) and root anatomy (endodermis dimensions)). High VPD decreased biomass accumulation by reducing tillering, the leaf expansion rate and the duration of leaf expansion; decreased root endodermis cell size; and increased TR and the rate of TR increase upon gradual short-term VPD increases. Such changes may allow plants to increase their water transport capacity in a high VPD environment and are genotype-specific. Some variation in water use components was associated with terminal drought adaptation QTL. Knowledge of water use traits’ plasticity in growth environments that varied in evaporative demand, and on their genetic determinacy, is necessary to develop trait-based breeding approaches to complex constraints

    Cyclin A as a marker for prognosis and chemotherapy response in advanced breast cancer

    Get PDF
    We wanted to study cyclin A as a marker for prognosis and chemotherapy response. A total of 283 women with metastatic breast cancer were initially enrolled in a randomised multicentre trial comparing docetaxel to sequential methotrexate-fluorouracil (MF) in advanced breast cancer after anthracycline failure. Paraffin-embedded blocks of the primary tumour were available for 96 patients (34%). The proportion of cells expressing cyclin A was determined by immunohistochemistry using a mouse monoclonal antibody to human cyclin A. Response evaluation was performed according to WHO recommendations. The median cyclin A positivity of tumour cells was 14.5% (range 1.2–45.0). Cyclin A correlated statistically significantly to all other tested proliferation markers (mitotic count, histological grade and Ki-67). A high cyclin A correlated significantly to a shorter time to first relapse, risk ratio (RR) 1.94 (95% CI 1.24–3.03) and survival from diagnosis, RR 2.49 (95% CI 1.45–4.29), cutoff point for high/low proliferation group 10.5%. Cyclin A did not correlate to chemotherapy response or survival after anthracycline, docetaxel or MF therapy. Of all tumour biological factors tested (mitotic count, histological grade and Ki-67), cyclin A seemed to have the strongest prognostic value. Cyclin A is a good marker for tumour proliferation and prognosis in breast cancer. In the present study, cyclin A did not predict chemotherapy response

    Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

    Get PDF
    BACKGROUND: The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. METHODOLOGY/PRINCIPAL FINDINGS: Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. CONCLUSIONS: The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells

    Inhibition of the Intrinsic but Not the Extrinsic Apoptosis Pathway Accelerates and Drives Myc-Driven Tumorigenesis Towards Acute Myeloid Leukemia

    Get PDF
    Myc plays an important role in tumor development, including acute myeloid leukemia (AML). However, MYC is also a powerful inducer of apoptosis, which is one of the major failsafe programs to prevent cancer development. To clarify the relative importance of the extrinsic (death receptor-mediated) versus the intrinsic (mitochondrial) pathway of apoptosis in MYC-driven AML, we coexpressed MYC together with anti-apoptotic proteins of relevance for AML; BCL-XL/BCL-2 (inhibiting the intrinsic pathway) or FLIPL (inhibiting the extrinsic pathway), in hematopoietic stems cells (HSCs). Transplantation of HSCs expressing MYC into syngeneic recipient mice resulted in development of AML and T-cell lymphomas within 7–9 weeks as expected. Importantly, coexpression of MYC together with BCL-XL/BCL-2 resulted in strongly accelerated kinetics and favored tumor development towards aggressive AML. In contrast, coexpression of MYC and FLIPL did neither accelerate tumorigenesis nor change the ratio of AML versus T-cell lymphoma. However, a change in distribution of immature CD4+CD8+ versus mature CD4+ T-cell lymphoma was observed in MYC/FLIPL mice, possibly as a result of increased survival of the CD4+ population, but this did not significantly affect the outcome of the disease. In conclusion, our findings provide direct evidence that BCL-XL and BCL-2 but not FLIPL acts in synergy with MYC to drive AML development

    E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    Get PDF
    BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity

    DNA repair, genome stability and cancer: a historical perspective

    Get PDF
    The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy

    Myc proteins in brain tumor development and maintenance

    Get PDF
    Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor therapies

    The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein

    Get PDF
    Development of the nervous system requires that timely withdrawal from the cell cycle be coupled with initiation of differentiation. Ubiquitin-mediated degradation of the N-Myc oncoprotein in neural stem/progenitor cells is thought to trigger the arrest of proliferation and begin differentiation. Here we report that the HECT-domain ubiquitin ligase Huwe1 ubiquitinates the N-Myc oncoprotein through Lys 48-mediated linkages and targets it for destruction by the proteasome. This process is physiologically implemented by embryonic stem (ES) cells differentiating along the neuronal lineage and in the mouse brain during development. Genetic and RNA interference-mediated inactivation of the Huwe1 gene impedes N-Myc degradation, prevents exit from the cell cycle by opposing the expression of Cdk inhibitors and blocks differentiation through persistent inhibition of early and late markers of neuronal differentiation. Silencing of N-myc in cells lacking Huwe1 restores neural differentiation of ES cells and rescues cell-cycle exit and differentiation of the mouse cortex, demonstrating that Huwe1 restrains proliferation and enables neuronal differentiation by mediating the degradation of N-Myc. These findings indicate that Huwe1 links destruction of N-Myc to the quiescent state that complements differentiation in the neural tissue

    Poisson–Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian field

    No full text
    International audienc
    corecore