749 research outputs found

    Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach

    Get PDF
    It is shown that the perturbative expansions of the correlation functions of a relativistic quantum field theory at finite temperature are uniquely determined by the equations of motion and standard axiomatic requirements, including the KMS condition. An explicit expression as a sum over generalized Feynman graphs is derived. The canonical formalism is not used, and the derivation proceeds from the beginning in the thermodynamic limit. No doubling of fields is invoked. An unsolved problem concerning existence of these perturbative expressions is pointed out.Comment: 17pages Late

    Spectral properties of a spin-incoherent Luttinger Liquid

    Full text link
    We present time-dependent density matrix renormalization group (DMRG) results for strongly interacting one dimensional fermionic systems at finite temperature. When interactions are strong the characteristic spin energy can be greatly suppressed relative to the characteristic charge energy, allowing for the possibility of spin-incoherent Luttinger liquid physics when the temperature is high compared to the spin energy, but small compared to the charge energy. Using DMRG we compute the spectral properties of the tJt-J model at arbitrary temperatures with respect to both spin and charge energies. We study the full crossover from the Luttinger liquid regime to the spin-incoherent regime,focusing on small J/tJ/t, where the signatures of spin-incoherent behavior are more manifest. Our method allows us to access the analytically intractable regime where temperature is of the order of the spin energy, TJT\sim J. Our results should be helpful in the interpretation of experiments that may be in the crossover regime, TJT\sim J, and apply to one-dimensional cold atomic gases where finite-temperature effects are appreciable. The technique may also be used to guide the development of analytical approximations for the crossover regime.Comment: 7 pages, 5 figure

    Confined Phase In The Real Time Formalism And The Fate Of The World Behind The Horizon

    Full text link
    In the real time formulation of finite temperature field theories, one introduces an additional set of fields (type-2 fields) associated to each field in the original theory (type-1 field). In hep-th/0106112, in the context of the AdS-CFT correspondence, Maldacena interpreted type-2 fields as living on a boundary behind the black hole horizon. However, below the Hawking-Page transition temperature, the thermodynamically preferred configuration is the thermal AdS without a black hole, and hence there are no horizon and boundary behind it. This means that when the dual gauge theory is in confined phase, the type-2 fields cannot be associated with the degrees of freedom behind the black hole horizon. I argue that in this case the role of the type-2 fields is to make up bulk type-2 fields of classical closed string field theory on AdS at finite temperature in the real time formalism.Comment: v2: cases divided into sections with more detailed explanations. considerably enlarged with examples and a lot of figures. sec 4.1.2 for general closed cut-out circuits and appendix A for a sample calculation newly added. many minor corrections and clarifying comments. refs added. v3: refs and related discussion added. 1+46 pages, 26 figures. published versio

    Vacuum structure for expanding geometry

    Get PDF
    We consider gravitational wave modes in the FRW metrics in a de Sitter phase and show that the state space splits into many unitarily inequivalent representations of the canonical commutation relations. Non-unitary time evolution is described as a trajectory in the space of the representations. The generator of time evolution is related to the entropy operator. The thermodynamic arrow of time is shown to point in the same direction of the cosmological arrow of time. The vacuum is a two-mode SU(1,1) squeezed state of thermo field dynamics. The link between expanding geometry, squeezing and thermal properties is exhibited.Comment: Latex file, epsfig, 1 figure, 21 page

    Condensation in Globally Coupled Populations of Chaotic Dynamical Systems

    Get PDF
    The condensation transition, leading to complete mutual synchronization in large populations of globally coupled chaotic Roessler oscillators, is investigated. Statistical properties of this transition and the cluster structure of partially condensed states are analyzed.Comment: 11 pages, 4 figures, revte

    Thermal Bogoliubov transformation in nuclear structure theory

    Full text link
    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009, Dubna, Russi

    Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation

    Full text link
    The formation of amplitude modulated and phase modulated assemblies of neurons is observed in the brain functional activity. The study of the formation of such structures requires that the analysis has to be organized in hierarchical levels, microscopic, mesoscopic, macroscopic, each with its characteristic space-time scales and the various forms of energy, electric, chemical, thermal produced and used by the brain. In this paper, we discuss the microscopic dynamics underlying the mesoscopic and the macroscopic levels and focus our attention on the thermodynamics of the non-equilibrium phase transitions. We obtain the time-dependent Ginzburg-Landau equation for the non-stationary regime and consider the formation of topologically non-trivial structures such as the vortex solution. The power laws observed in functional activities of the brain is also discussed and related to coherent states characterizing the many-body dissipative model of brain.Comment: 19 pages, 4 figures, research pape

    Quantum-classical crossover in electrodynamics

    Get PDF
    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-see can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.Comment: new references added, few sign errors fixed, to appear in Physical Review

    Massless Thirring model in canonical quantization scheme

    Full text link
    It is shown that the exact solvability of the massless Thirring model in the canonical quantization scheme originates from the intrinsic linearizability of its Heisenberg equations in the method of dynamical mappings. The corresponding role of inequivalent representations of free massless Dirac field is elucidated.Comment: 10 page
    corecore