187 research outputs found

    Identification of Animal Species and Foreign Tissues in Ready-to-Sell Fresh Processed Meat Products

    Get PDF
    The demand for ready-to-eat meat products has recently increased, and routine controls are inevitable to provide food safety. Therefore, a total of 250 fresh processed beef meat products collected from local markets and restaurants in the districts of Istanbul mostly with low purchasing power were investigated by histological and biomolecular methods. Chicken tissue was found in 62 (24.8%) of the analysed samples and horse tissue was found in 2 (0.8%) samples, while pork tissue was not detected. Additionally, foreign tissues were detected in 70 (28%) of 250 samples. PCR assays combined with histological examinations can be used as an important method in establishing food safety by determining the deliberate or accidental adulterations of meat products

    Post-authorship attribution using regularized deep neural network

    Get PDF
    Post-authorship attribution is a scientific process of using stylometric features to identify the genuine writer of an online text snippet such as an email, blog, forum post, or chat log. It has useful applications in manifold domains, for instance, in a verification process to proactively detect misogynistic, misandrist, xenophobic, and abusive posts on the internet or social networks. The process assumes that texts can be characterized by sequences of words that agglutinate the functional and content lyrics of a writer. However, defining an appropriate characterization of text to capture the unique writing style of an author is a complex endeavor in the discipline of computational linguistics. Moreover, posts are typically short texts with obfuscating vocabularies that might impact the accuracy of authorship attribution. The vocabularies include idioms, onomatopoeias, homophones, phonemes, synonyms, acronyms, anaphora, and polysemy. The method of the regularized deep neural network (RDNN) is introduced in this paper to circumvent the intrinsic challenges of post-authorship attribution. It is based on a convolutional neural network, bidirectional long short-term memory encoder, and distributed highway network. The neural network was used to extract lexical stylometric features that are fed into the bidirectional encoder to extract a syntactic feature-vector representation. The feature vector was then supplied as input to the distributed high networks for regularization to minimize the network-generalization error. The regularized feature vector was ultimately passed to the bidirectional decoder to learn the writing style of an author. The feature-classification layer consists of a fully connected network and a SoftMax function to make the prediction. The RDNN method was tested against thirteen state-of-the-art methods using four benchmark experimental datasets to validate its performance. Experimental results have demonstrated the effectiveness of the method when compared to the existing state-of-the-art methods on three datasets while producing comparable results on one dataset.The Department of Science and Technology (DST) and the Council for Scientific and Industrial Research (CSIR).https://www.mdpi.com/journal/applsciam2023Computer Scienc

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation

    Get PDF
    Small noncoding RNAs (sRNA) can function as posttranscriptional activators of gene expression to regulate stress responses and metabolism. We here describe the mechanisms by which two sRNAs, GlmY and GlmZ, activate the Escherichia coli glmS mRNA, coding for an essential enzyme in amino-sugar metabolism. The two sRNAs, although being highly similar in sequence and structure, act in a hierarchical manner. GlmZ, together with the RNA chaperone, Hfq, directly activates glmS mRNA translation by an anti-antisense mechanism. In contrast, GlmY acts upstream of GlmZ and positively regulates glmS by antagonizing GlmZ RNA inactivation. We also report the first example, to our knowledge, of mRNA expression being controlled by the poly(A) status of a chromosomally encoded sRNA. We show that in wild-type cells, GlmY RNA is unstable due to 3′ end polyadenylation; whereas in an E. coli pcnB mutant defective in RNA polyadenylation, GlmY is stabilized and accumulates, which in turn stabilizes GlmZ and causes GlmS overproduction. Our study reveals hierarchical action of two well-conserved sRNAs in a complex regulatory cascade that controls the glmS mRNA. Similar cascades of noncoding RNA regulators may operate in other organisms

    Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine - a prospective study with ultrasound-based motion analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder complaints, and especially the outlet-impingement syndrome, are a common condition. Among other things, poor posture has been discussed as a cause. A correlation between impingement syndrome and restricted mobility of the thoracic spine (T) has been described earlier, but there has been no motion analysis of the thoracic spine to show these correlations. In the present prospective study, we intended to find out whether there is a significant difference in the thoracic sagittal range of motion (ROM) between patients with a shoulder outlet impingement syndrome and a group of patients who had no shoulder pathology. Secondly, we wanted to clarify whether Ott's sign correlates with ultrasound topometric measurements.</p> <p>Methods</p> <p>Two sex- and age-matched groups (2 × n = 39) underwent a clinical and an ultrasound topometric examination. The postures examined were sitting up straight, sitting in maximal flexion and sitting in maximal extension. The disabilities of the arm, shoulder and hand (DASH) score (obtained by means of a self-assessment questionnaire) and the Constant score were calculated. Lengthening and shortening of the dorsal projections of the spine in functional positions was measured by tape with Ott's sign.</p> <p>Results</p> <p>On examination of the thoracic kyphosis in the erect seated posture there were no significant differences between the two groups (p = 0.66). With ultrasound topometric measurement it was possible to show a significantly restricted segmental mobility of the thoracic spine in the study group compared with the control group (p = 0.01). An in-depth look at the mobility of the subsegments T1-4, T5-8 and T9-12 revealed that differences between the groups in the mobility in the lower two sections of the thoracic spine were significant (T5-8: p = 0.03; T9-12: p = 0.02). The study group had an average Constant score of 35.1 points and the control group, 85.5 (p < 0.001). On the DASH score the patient group reached 34.2 points and the control group, 1.4 (p < 0.001). The results of Ott's sign differed significantly between the two collectives (p = 0.0018), but showed a weak correlation with the ultrasound topometric measurements (study group flexion/extension: r = 0.36/0.43, control group flexion/extension: r = 0.29/0.26).</p> <p>Conclusion</p> <p>The mobility of the thoracic spine should receive more attention in the diagnosis and therapy of patients with shoulder outlet impingement syndrome.</p
    corecore