579 research outputs found

    Public ubiquitous computing systems:lessons from the e-campus display deployments

    Get PDF
    In this paper we reflect on our experiences of deploying ubiquitous computing systems in public spaces and present a series of lessons that we feel will be of benefit to researchers planning similar public deployments. We focus on experiences gained from building and deploying three experimental public display systems as part of the e-campus pro ject. However, we believe the lessons are likely to be generally applicable to many different types of public ubicomp deployment

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Mapping the effect of defect-induced strain disorder on the Dirac states of topological insulators

    Get PDF
    We provide a detailed microscopic characterization of the influence of defects-induced disorder onto the Dirac spectrum of three dimensional topological insulators. By spatially resolved Landau-levels spectroscopy measurements, we reveal the existence of nanoscale fluctuations of both the Dirac point energy as well as of the Dirac-fermions velocity which is found to spatially change in opposite direction for electrons and holes, respectively. These results evidence a scenario which goes beyond the existing picture based on chemical potential fluctuations. The findings are consistently explained by considering the microscopic effects of local stain introduced by defects, which our model calculations show to effectively couple to topological states, reshaping their Dirac-like dispersion over a large energy range. In particular, our results indicate that the presence of microscopic spatially varying stain, inevitably present in crystals because of the random distribution of defects, effectively couple to topological states and should be carefully considered for correctly describing the effects of disorder

    A Salmonella Small Non-Coding RNA Facilitates Bacterial Invasion and Intracellular Replication by Modulating the Expression of Virulence Factors

    Get PDF
    Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo

    Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes

    Full text link
    The Crab pulsar is the only astronomical pulsed source detected at very high energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0σ8.0 \sigma and 12.6σ12.6 \sigma. In addition, significant emission was found between the two pulses with 6.2σ6.2 \sigma. We discovered the bridge emission above 50 GeV between the two main pulses. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure

    Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    Get PDF
    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χ2=35/26\chi^2=35/26). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±\pm 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {\mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure

    The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the sigma of a 2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle Physic

    MAGIC observations of MWC 656, the only known Be/BH system

    Get PDF
    Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for \sim23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of \sim5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table

    First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439

    Full text link
    We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 hours of good quality stereoscopic data. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E > 70 GeV) during a 1.3-hour long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. We determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/- 0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.Comment: 17 pages, 15 figures, Accepted for publication in A&

    Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

    Get PDF
    PG 1553+113 is a very-high-energy (VHE, E>100GeVE>100\,\mathrm{GeV}) γ\gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4<z<0.580.4<z<0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high-state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ\gamma-ray flux at E<100GeVE<100\,\mathrm{GeV} observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ\gamma-ray spectrum is rejected with a high significance (fit probability P=2.6 ×106\times 10^{-6}). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z0.4z\sim0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4z=0.4, based on the detection of Lyα\alpha absorption. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.Comment: 13 pages, 7 figures, accepted for publication in MNRA
    corecore