30 research outputs found

    Optimizing care for children with difficult-to-treat and severe asthma through specialist paediatric asthma centres:expert practical experience and advice

    Get PDF
    Severe asthma in children carries an unacceptable treatment burden, yet its rarity means clinical experience in treating it is limited, even among specialists. Practical guidance is needed to support clinical decision-making to optimize treatment for children with this condition. This modified Delphi convened 16 paediatric pulmonologists and allergologists from northern Europe, all experienced in treating children with severe asthma. Informed by interviews with stakeholders involved in the care of children with severe asthma (including paediatricians, nurses and carers), and an analysis of European guidelines, the experts built a consensus focused on the gaps in existing guidance. Explored were considerations for optimizing care for patients needing biologic treatment, and for selecting home or hospital delivery of biologics. This consensus is aimed at clinicians in specialist centres, as well as general paediatricians, paediatric allergologists and paediatric pulmonologists who refer children with the most severe asthma to specialist care. Consensus is based on expert opinion and is intended for use alongside published guidelines. Our discussions revealed three key facets to optimizing care. Firstly, early asthma detection in children presenting with wheezing and/or dyspnoea is vital, with a low threshold for referral from primary to specialist care. Secondly, children who may need biologics should be referred to and managed by specialist paediatric asthma centres; we define principles for the specialist team members, tests, and expertise necessary at such centres, as well as guidance on when homecare biologics delivery is and is not appropriate. Thirdly, shared decision-making is essential at all stages of the patient’s journey: clear, concise treatment plans are vital for patient/carer self-management, and structured processes for transition from paediatric to adult services are valuable. The experts identified the potential for specialist paediatric asthma nurses to play a significant role in facilitating multidisciplinary working. Through this project is agreed a framework of practical advice to optimize the care of children with severe asthma. We encourage clinicians and policymakers to implement this practical advice to enhance patient care.</p

    Infant tidal flow–volume parameters and arousal state

    Get PDF
    This version is distributed under the terms of the Creative Commons Attribution NonCommercial Licence 4.0. For commercial reproduction rights and permissions contact: [email protected]: Infant lung function can be assessed with tidal flow–volume (TFV) loops. While TFV loops can be measured in both awake and sleeping infants, the influence of arousal state in early infancy is not established. The aim of the present study was to determine whether TFV loop parameters in healthy infants differed while awake compared to the sleeping state at 3 months of age. Methods: From the population-based Scandinavian Preventing Atopic Dermatitis and ALLergies in children (PreventADALL) birth cohort, 91 infants had reproducible TFV loops measured with ExhalyzerÂź D in both the awake and sleeping state at 3 months of age. The TFV loops were manually selected according to a standardised procedure. The ratio of time to peak tidal expiratory flow (tPTEF) to expiratory time (tE) and the corresponding volume ratio (VPTEF/VE), as well as tidal volume (VT) and respiratory rate were compared using nonparametric tests. Results: The mean (95% CI) tPTEF/tE was significantly higher while awake compared to the sleeping state: 0.39 (0.37–0.41) versus 0.28 (0.27–0.29); with the corresponding VPTEF/VE of 0.38 (0.36–0.40) versus 0.29 (0.28–0.30). The VT was similar, while the respiratory rate was higher while awake compared to the sleeping state: 53 (51–56) breaths·min−1 versus 38 (36–40) breaths·min−1 . Conclusion: Higher tPTEF/tE, VPTEF/VE and respiratory rate, but similar VT while awake compared to the sleeping state suggests that separate normative TFV loop values according to arousal state may be required in early infancy.publishedVersio

    Filaggrin mutations in relation to skin barrier and atopic dermatitis in early infancy

    Get PDF
    Background Loss-of-function mutations in the skin barrier gene filaggrin (FLG) increase the risk of atopic dermatitis (AD), but their role in skin barrier function, dry skin and eczema in infancy is unclear. Objectives To determine the role of FLG mutations in impaired skin barrier function, dry skin, eczema and AD at 3 months of age and throughout infancy. Methods FLG mutations were analysed in 1836 infants in the Scandinavian population-based PreventADALL study. Transepidermal water loss (TEWL), dry skin, eczema and AD were assessed at 3, 6 and 12 months of age. Results FLG mutations were observed in 166 (9%) infants. At 3 months, carrying FLG mutations was not associated with impaired skin barrier function (TEWL > 11 center dot 3 g m(-2) h(-1)) or dry skin, but was associated with eczema [odds ratio (OR) 2 center dot 89, 95% confidence interval (CI) 1 center dot 95-4 center dot 28; P < 0 center dot 001]. At 6 months, mutation carriers had significantly higher TEWL than nonmutation carriers [mean 9 center dot 68 (95% CI 8 center dot 69-10 center dot 68) vs. 8 center dot 24 (95% CI 7 center dot 97-8 center dot 15), P < 0 center dot 01], and at 3 and 6 months mutation carriers had an increased risk of dry skin on the trunk (OR 1 center dot 87, 95% CI 1 center dot 25-2 center dot 80; P = 0 center dot 002 and OR 2 center dot 44, 95% CI 1 center dot 51-3 center dot 95; P < 0 center dot 001) or extensor limb surfaces (OR 1 center dot 52, 95% CI 1 center dot 04-2 center dot 22; P = 0 center dot 028 and OR 1 center dot 74, 95% CI 1 center dot 17-2 center dot 57; P = 0 center dot 005). FLG mutations were associated with eczema and AD in infancy. Conclusions FLG mutations were not associated with impaired skin barrier function or dry skin in general at 3 months of age, but increased the risk for eczema, and for dry skin on the trunk and extensor limb surfaces at 3 and 6 months.Peer reviewe

    Skin care interventions in infants for preventing eczema and food allergy

    Get PDF
    BackgroundEczema and food allergy are common health conditions that usually begin in early childhood and often occur together in the same people. They can be associated with an impaired skin barrier in early infancy. It is unclear whether trying to prevent or reverse an impaired skin barrier soon after birth is effective in preventing eczema or food allergy.ObjectivesPrimary objectiveTo assess effects of skin care interventions, such as emollients, for primary prevention of eczema and food allergy in infantsSecondary objectiveTo identify features of study populations such as age, hereditary risk, and adherence to interventions that are associated withthe greatest treatment benefit or harm for both eczema and food allergy.Search methodsWe searched the following databases up to July 2020: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, and Embase. We searched two trials registers and checked reference lists of included studies and relevant systematic reviews for further references to relevant randomised controlled trials (RCTs). We contacted field experts to identify planned trials and to seek information about unpublished or incomplete trials.Selection criteriaRCTs of skin care interventions that could potentially enhance skin barrier function, reduce dryness, or reduce subclinical inflammation in healthy term (> 37 weeks) infants (0 to 12 months) without pre‐existing diagnosis of eczema, food allergy, or other skin condition were included. Comparison was standard care in the locality or no treatment. Types of skin care interventions included moisturisers/emollients; bathing products; advice regarding reducing soap exposure and bathing frequency; and use of water softeners. No minimum follow‐up was required.Data collection and analysisThis is a prospective individual participant data (IPD) meta‐analysis. We used standard Cochrane methodological procedures, and primary analyses used the IPD dataset. Primary outcomes were cumulative incidence of eczema and cumulative incidence of immunoglobulin (Ig)E‐mediated food allergy by one to three years, both measured by the closest available time point to two years. Secondary outcomes included adverse events during the intervention period; eczema severity (clinician‐assessed); parent report of eczema severity; time to onset of eczema; parent report of immediate food allergy; and allergic sensitisation to food or inhalant allergen.Main resultsThis review identified 33 RCTs, comprising 25,827 participants. A total of 17 studies, randomising 5823 participants, reported information on one or more outcomes specified in this review. Eleven studies randomising 5217 participants, with 10 of these studies providing IPD, were included in one or more meta‐analysis (range 2 to 9 studies per individual meta‐analysis).Most studies were conducted at children's hospitals. All interventions were compared against no skin care intervention or local standard care. Of the 17 studies that reported our outcomes, 13 assessed emollients. Twenty‐five studies, including all those contributing data to meta‐analyses, randomised newborns up to age three weeks to receive a skin care intervention or standard infant skin care. Eight of the 11 studies contributing to meta‐analyses recruited infants at high risk of developing eczema or food allergy, although definition of high risk varied between studies. Durations of intervention and follow‐up ranged from 24 hours to two years.We assessed most of this review's evidence as low certainty or had some concerns of risk of bias. A rating of some concerns was most often due to lack of blinding of outcome assessors or significant missing data, which could have impacted outcome measurement but was judged unlikely to have done so. Evidence for the primary food allergy outcome was rated as high risk of bias due to inclusion of only one trial where findings varied when different assumptions were made about missing data.Skin care interventions during infancy probably do not change risk of eczema by one to two years of age (risk ratio (RR) 1.03, 95% confidence interval (CI) 0.81 to 1.31; moderate‐certainty evidence; 3075 participants, 7 trials) nor time to onset of eczema (hazard ratio 0.86, 95% CI 0.65 to 1.14; moderate‐certainty evidence; 3349 participants, 9 trials). It is unclear whether skin care interventions during infancy change risk of IgE‐mediated food allergy by one to two years of age (RR 2.53, 95% CI 0.99 to 6.47; 996 participants, 1 trial) or allergic sensitisation to a food allergen at age one to two years (RR 0.86, 95% CI 0.28 to 2.69; 1055 participants, 2 trials) due to very low‐certainty evidence for these outcomes. Skin care interventions during infancy may slightly increase risk of parent report of immediate reaction to a common food allergen at two years (RR 1.27, 95% CI 1.00 to 1.61; low‐certainty evidence; 1171 participants, 1 trial). However, this was only seen for cow’s milk, and may be unreliable due to significant over‐reporting of cow’s milk allergy in infants. Skin care interventions during infancy probably increase risk of skin infection over the intervention period (RR 1.34, 95% CI 1.02 to 1.77; moderate‐certainty evidence; 2728 participants, 6 trials) and may increase risk of infant slippage over the intervention period (RR 1.42, 95% CI 0.67 to 2.99; low‐certainty evidence; 2538 participants, 4 trials) or stinging/allergic reactions to moisturisers (RR 2.24, 95% 0.67 to 7.43; low‐certainty evidence; 343 participants, 4 trials), although confidence intervals for slippages and stinging/allergic reactions are wide and include the possibility of no effect or reduced risk.Preplanned subgroup analyses show that effects of interventions were not influenced by age, duration of intervention, hereditary risk, FLG mutation, or classification of intervention type for risk of developing eczema. We could not evaluate these effects on risk of food allergy. Evidence was insufficient to show whether adherence to interventions influenced the relationship between skin care interventions and risk of developing eczema or food allergy.Authors' conclusionsSkin care interventions such as emollients during the first year of life in healthy infants are probably not effective for preventing eczema, and probably increase risk of skin infection. Effects of skin care interventions on risk of food allergy are uncertain.Further work is needed to understand whether different approaches to infant skin care might promote or prevent eczema and to evaluate effects on food allergy based on robust outcome assessments

    Über Gleichgewichte und Struktur des flĂŒssigen Schwefels

    No full text

    Optimizing care for children with difficult-to-treat and severe asthma through specialist paediatric asthma centres:expert practical experience and advice

    Get PDF
    Severe asthma in children carries an unacceptable treatment burden, yet its rarity means clinical experience in treating it is limited, even among specialists. Practical guidance is needed to support clinical decision-making to optimize treatment for children with this condition. This modified Delphi convened 16 paediatric pulmonologists and allergologists from northern Europe, all experienced in treating children with severe asthma. Informed by interviews with stakeholders involved in the care of children with severe asthma (including paediatricians, nurses and carers), and an analysis of European guidelines, the experts built a consensus focused on the gaps in existing guidance. Explored were considerations for optimizing care for patients needing biologic treatment, and for selecting home or hospital delivery of biologics. This consensus is aimed at clinicians in specialist centres, as well as general paediatricians, paediatric allergologists and paediatric pulmonologists who refer children with the most severe asthma to specialist care. Consensus is based on expert opinion and is intended for use alongside published guidelines. Our discussions revealed three key facets to optimizing care. Firstly, early asthma detection in children presenting with wheezing and/or dyspnoea is vital, with a low threshold for referral from primary to specialist care. Secondly, children who may need biologics should be referred to and managed by specialist paediatric asthma centres; we define principles for the specialist team members, tests, and expertise necessary at such centres, as well as guidance on when homecare biologics delivery is and is not appropriate. Thirdly, shared decision-making is essential at all stages of the patient’s journey: clear, concise treatment plans are vital for patient/carer self-management, and structured processes for transition from paediatric to adult services are valuable. The experts identified the potential for specialist paediatric asthma nurses to play a significant role in facilitating multidisciplinary working. Through this project is agreed a framework of practical advice to optimize the care of children with severe asthma. We encourage clinicians and policymakers to implement this practical advice to enhance patient care.</p

    Virus type and genomic load in acute bronchiolitis: severity and treatment response with inhaled adrenaline.

    No full text
    Background. Acute bronchiolitis frequently causes infant hospitalization. Studies on different viruses or viral genomic load and disease severity or treatment effect have had conflicting results. We aimed to investigate whether the presence or concentration of individual or multiple viruses were associated with disease severity in acute bronchiolitis and to evaluate whether detected viruses modified the response to inhaled racemic adrenaline. Methods. Nasopharyngeal aspirates were collected from 363 infants with acute bronchiolitis in a randomized, controlled trial that compared inhaled racemic adrenaline versus saline. Virus genome was identified and quantified by polymerase chain reaction analyses. Severity was assessed on the basis of the length of stay and the use of supportive care. Results. Respiratory syncytial virus (83%) and human rhinovirus (34%) were most commonly detected. Seven other viruses were present in 8%–15% of the patients. Two or more viruses (maximum, 7) were detected in 61% of the infants. Virus type or coinfection was not associated with disease severity. A high genomic load of respiratory syncytial virus was associated with a longer length of stay and with an increased frequency of oxygen and ventilatory support use. Treatment effect of inhaled adrenaline was not modified by virus type, load or coinfection. Discussion. In infants hospitalized with acute bronchiolitis, disease severity was not associated with specific viruses or the total number of viruses detected. A high RSV genomic load was associated with more-severe disease. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Infectious Diseases following peer review. The version of record is available online at: http://dx.doi.org/10.1093/infdis/jiv51
    corecore