1,647 research outputs found

    Colour Deconfinement and Quarkonium Binding

    Full text link
    At high temperatures, strongly interacting matter becomes a plasma of deconfined quarks and gluons. In statistical QCD, deconfinement and the properties of the resulting quark-gluon plasma can be investigated by studying the in-medium behaviour of heavy quark bound states. In high energy nuclear interactions, quarkonia probe different aspects of the medium formed in the collision. We survey the results of recent charmonium production studies in SPS and RHIC experiments.Comment: 50 pages, 53 figures; revised section 6.

    A new measurement of J/psi suppression in Pb-Pb collisions at 158 GeV per nucleon

    Full text link
    We present a new measurement of J/psi production in Pb-Pb collisions at 158 GeV/nucleon, from the data sample collected in year 2000 by the NA50 Collaboration, under improved experimental conditions with respect to previous years. With the target system placed in vacuum, the setup was better adapted to study, in particular, the most peripheral nuclear collisions with unprecedented accuracy. The analysis of this data sample shows that the (J/psi)/Drell-Yan cross-sections ratio measured in the most peripheral Pb-Pb interactions is in good agreement with the nuclear absorption pattern extrapolated from the studies of proton-nucleus collisions. Furthermore, this new measurement confirms our previous observation that the (J/psi)/Drell-Yan cross-sections ratio departs from the normal nuclear absorption pattern for semi-central Pb-Pb collisions and that this ratio persistently decreases up to the most central collisions.Comment: 19 pages, 10 figures. Submitted to Eur. Phys. J.

    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    Full text link
    We describe a search method for fast moving (β>5×103\beta > 5 \times 10^{-3}) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×1015cm2s1sr11.5 \times 10^{-15} cm^{-2} s^{-1} sr^{-1} in the velocity range 5×103β0.995 \times 10^{-3} \le \beta \le 0.99 and for nucleon decay catalysis cross section smaller than 1mb\sim 1 mb.Comment: 29 pages (12 figures). Accepted by Astroparticle Physic

    Final results of magnetic monopole searches with the MACRO experiment

    Get PDF
    We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4×105<β<14\times 10^{-5}< \beta < 1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4×10161.4\times 10^{-16} cm2^{-2} s1^{-1} sr1^{-1}. This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole β\beta range in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table

    The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data

    Full text link
    The cosmic ray primary composition in the energy range between 10**15 and 10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nmu-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He). The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.Comment: Submitted to Astroparticle Physic

    Measurement of the residual energy of muons in the Gran Sasso underground Laboratories

    Full text link
    The MACRO detector was located in the Hall B of the Gran Sasso underground Laboratories under an average rock overburden of 3700 hg/cm^2. A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m^2, was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm^2.Comment: 28 pages, 9 figure

    Muon Energy Estimate Through Multiple Scattering with the Macro Detector

    Get PDF
    Muon energy measurement represents an important issue for any experiment addressing neutrino induced upgoing muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDC's included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for Eμ<E_\mu<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.

    Search for Nucleon Decays induced by GUT Magnetic Monopoles with the MACRO Experiment

    Get PDF
    The interaction of a Grand Unification Magnetic Monopole with a nucleon can lead to a barion-number violating process in which the nucleon decays into a lepton and one or more mesons (catalysis of nucleon decay). In this paper we report an experimental study of the effects of a catalysis process in the MACRO detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux upper limits at the level of 31016cm2s1sr1\sim 3\cdot 10^{-16} cm^{-2} s^{-1} sr^{-1} for 1.1104β51031.1\cdot 10^{-4} \le |\beta| \le 5\cdot 10^{-3}, based on the search for catalysis events in the MACRO data. We also analyze the dependence of the MM flux limit on the catalysis cross section.Comment: 12 pages, Latex, 10 figures and 2 Table

    Nuclearite search with the MACRO detector at Gran Sasso

    Full text link
    In this paper we present the results of a search for nuclearites in the penetrating cosmic radiation using the scintillator and track-etch subdetectors of the MACRO apparatus. The analyses cover the beta =v/c range at the detector depth (3700 hg/cm^2) 10^-5 < beta < 1; for beta = 2 x 10^-3 the flux limit is 2.7 x 10^-16 cm^-2 s^-1 sr^-1 for an isotropic flux of nuclearites, and twice this value for a flux of downgoing nuclearites.Comment: 16 pages, 4 Encapsulated Postscript figures, uses article.sty. Submitted to The European Physical Journal
    corecore