16 research outputs found

    Multimorbidity and survival for patients with acute myocardial infarction in England and Wales: Latent class analysis of a nationwide population-based cohort

    Get PDF
    Background: There is limited knowledge of the scale and impact of multimorbidity for patients who have had an acute myocardial infarction (AMI). Therefore, this study aimed to determine the extent to which multimorbidity is associated with long-term survival following AMI. Methods and findings: This national observational study included 693,388 patients (median age 70.7 years, 452,896 [65.5%] male) from the Myocardial Ischaemia National Audit Project (England and Wales) who were admitted with AMI between 1 January 2003 and 30 June 2013. There were 412,809 (59.5%) patients with multimorbidity at the time of admission with AMI, i.e., having at least 1 of the following long-term health conditions: diabetes, chronic obstructive pulmonary disease or asthma, heart failure, renal failure, cerebrovascular disease, peripheral vascular disease, or hypertension. Those with heart failure, renal failure, or cerebrovascular disease had the worst outcomes (39.5 [95% CI 39.0–40.0], 38.2 [27.7–26.8], and 26.6 [25.2–26.4] deaths per 100 person-years, respectively). Latent class analysis revealed 3 multimorbidity phenotype clusters: (1) a high multimorbidity class, with concomitant heart failure, peripheral vascular disease, and hypertension, (2) a medium multimorbidity class, with peripheral vascular disease and hypertension, and (3) a low multimorbidity class. Patients in class 1 were less likely to receive pharmacological therapies compared with class 2 and 3 patients (including aspirin, 83.8% versus 87.3% and 87.2%, respectively; β-blockers, 74.0% versus 80.9% and 81.4%; and statins, 80.6% versus 85.9% and 85.2%). Flexible parametric survival modelling indicated that patients in class 1 and class 2 had a 2.4-fold (95% CI 2.3–2.5) and 1.5-fold (95% CI 1.4–1.5) increased risk of death and a loss in life expectancy of 2.89 and 1.52 years, respectively, compared with those in class 3 over the 8.4-year follow-up period. The study was limited to all-cause mortality due to the lack of available cause-specific mortality data. However, we isolated the disease-specific association with mortality by providing the loss in life expectancy following AMI according to multimorbidity phenotype cluster compared with the general age-, sex-, and year-matched population. Conclusions: Multimorbidity among patients with AMI was common, and conferred an accumulative increased risk of death. Three multimorbidity phenotype clusters that were significantly associated with loss in life expectancy were identified and should be a concomitant treatment target to improve cardiovascular outcomes

    Management effects on European cropland respiration

    Full text link
    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO<sub>2</sub>. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO<sub>2</sub> as they occur under current climate and management conditions. Our findings are based on all available CarboEurope IP eddy covariance flux measurements during a 4-year period (2004–2007). Detailed management information was available for 15 out of the 22 sites that contributed flux data, from which we compiled 30 types of management for European-scale comparison. This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from +83% (early season tillage) to −50% (rice paddy flooding and burning of rice residues) on the 28 days time scale, when only management types with a minimum of 7 replications are considered. Most management types showed a large variation among events and between sites, indicating that additional factors other than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13 management types with adequate statistical coverage of at least 5 events during the years 2004–2007. In this comparison, late-season moldboard ploughing (30–45&#xa0;cm) led to highest median increase in respiration on the 7 days timescale (+43%), which was still +15% in the 28 days comparison. On average, however, management-induced increases in respiration losses from croplands were quite moderate (typically &lt;20% increase over 28 days). An assessment of extreme values in daily respiration fluxes using the Gumbel distribution approach revealed that sites with larger average respiration fluxes also experience the larger extremes in respiration fluxes. This suggests that it is very unlikely that sites that generally have low respiration rates will have exceedingly high respiration rates as a result of certain specific management events
    corecore