347 research outputs found

    Thermal Bogoliubov transformation in nuclear structure theory

    Full text link
    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009, Dubna, Russi

    Abelian symmetries in multi-Higgs-doublet models

    Full text link
    N-Higgs doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we make the first step towards this goal by classifying the elementary building blocks, namely the abelian symmetry groups, with a special emphasis on finite groups. We describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem 3, more explanations of the main strategy are added, matches the published versio

    A magnetically-induced Coulomb gap in graphene due to electron-electron interactions

    Get PDF
    Insights into the fundamental properties of graphene's Dirac-Weyl fermions have emerged from studies of electron tunnelling transistors in which an atomically thin layer of hexagonal boron nitride (hBN) is sandwiched between two layers of high purity graphene. Here, we show that when a single defect is present within the hBN tunnel barrier, it can inject electrons into the graphene layers and its sharply defined energy level acts as a high resolution spectroscopic probe of electron-electron interactions in graphene. We report a magnetic field dependent suppression of the tunnel current flowing through a single defect below temperatures of \sim 2 K. This is attributed to the formation of a magnetically-induced Coulomb gap in the spectral density of electrons tunnelling into graphene due to electron-electron interactions

    Partial level density of the n-quasiparticle excitations in the nuclei of the 39< A <201 region

    Full text link
    Level density and radiative strength functions are obtained from the analysis of two-step cascades intensities following the thermal neutrons capture. The data on level density are approximated by the sum of the partial level densities corresponding to n quasiparticles excitation. The most probable values of the collective enhancement factor of the level density are found together with the thresholds of the next Cooper nucleons pair breaking. These data allow one to calculate the level density of practically any nucleus in given spin window in the framework of model concepts, taking into account all known nuclear excitation types. The presence of an approximation results discrepancy with theoretical statements specifies the necessity of rather essentially developing the level density models. It also indicates the possibilities to obtain the essentially new information on nucleon correlation functions of the excited nucleus from the experiment.Comment: 29 pages, 8 figures, 2 table

    Symmetry Breaking in Few Layer Graphene Films

    Get PDF
    Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this article we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing ED.Comment: 23 pages, 13 figures, Conference Proceedings of DPG Meeting Mar 2007 Regensburg Submitted to New Journal of Physic

    Strong fragmentation of low-energy electromagnetic excitation strength in 117^{117}Sn

    Full text link
    Results of nuclear resonance fluorescence experiments on 117^{117}Sn are reported. More than 50 γ\gamma transitions with Eγ<4E_{\gamma} < 4 MeV were detected indicating a strong fragmentation of the electromagnetic excitation strength. For the first time microscopic calculations making use of a complete configuration space for low-lying states are performed in heavy odd-mass spherical nuclei. The theoretical predictions are in good agreement with the data. It is concluded that although the E1 transitions are the strongest ones also M1 and E2 decays contribute substantially to the observed spectra. In contrast to the neighboring even 116124^{116-124}Sn, in 117^{117}Sn the 11^- component of the two-phonon [21+31][2^+_1 \otimes 3^-_1] quintuplet built on top of the 1/2+^+ ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure

    Search for the electric dipole excitations to the 3s1/2[21+31]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 11^{-} component of the two-phonon [21+31][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure

    Silicon Suboxide Metal-Induced Crystallization Mechanisms Studies by Transmission Electron Microscopy

    Full text link
    High-resolution transmission electron microscopy was used to study system: substrate/Al (or Au) film/a-SiOx (x = 1.8 for Al and 0.3 for Au) film before and after annealing. The polycrystalline silicon formation mechanisms based on metal-induced crystallization using these two metals are proposed.Работа выполнена при поддержке РНФ (грант № 19-79-10143) с использованием оборудования ЦКП «Наноструктуры»

    The Special Functionalities of the Miltilevel Casceded H-Bridge Frequency Converters «ERATON-V»

    Full text link
    В докладе представлена краткая информация о специализированных сервисных функциях выпускаемого ЗАО «ЭРАСИБ» г. Новосибирск многоуровневого преобразователя частоты типа «ЭРАТОН-В» с каскадным включением Н-мостов, который предназначен для работы в составе регулируемых электроприводов переменного тока среднего класса напряжений 3-10 кВ в диапазоне мощностей трехфазной электрической машины 1-10 МВт.The report is devoted to describe the special functionalities of multilevel frequency converter «ERATON-V» with series-connected H-bridge voltage-source inverter produced the industrial company «ERASIB», city Novosibirsk, which is untended for variable-speed AC three-phase drives rated at 3-10 kV and 1-10 MW
    corecore