19 research outputs found

    Hypoxia and oxidative stress in breast cancer: Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer

    Get PDF
    Reactive oxygen species (ROS) damage DNA, but the role of ROS in breast carcinoma may not be limited to the mutagenic activity that drives carcinoma initiation and progression. Carcinoma cells in vitro and in vivo are frequently under persistent oxidative stress. In the present review, we outline potential causes of oxygen radical generation within carcinoma cells and explore the possible impact of oxidative stress on the clinical outcome of breast carcinoma

    Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Head trauma is one of the most important clinical issues that not only can be fatal and disabling, requiring long-term treatment and care, but also can cause heavy financial burden. Formation or distribution of free oxygen radicals should be decreased to enable fixing of poor neurological outcomes and to prevent neuronal damage secondary to ischemia after trauma. Coenzyme Q<sub>10 </sub>(CoQ<sub>10</sub>), a component of the mitochondrial electron transport chain, is a strong antioxidant that plays a role in membrane stabilization. In this study, the role of CoQ<sub>10 </sub>in the treatment of head trauma is researched by analyzing the histopathological and biochemical effects of CoQ<sub>10 </sub>administered after experimental traumatic brain injury in rats. A traumatic brain-injury model was created in all rats. Trauma was inflicted on rats by the free fall of an object of 450 g weight from a height of 70 cm on the frontoparietal midline onto a metal disc fixed between the coronal and the lambdoid sutures after a midline incision was carried out.</p> <p>Results</p> <p>In the biochemical tests, tissue malondialdehyde (MDA) levels were significantly higher in the traumatic brain-injury group compared to the sham group (<it>p </it>< 0.05). Administration of CoQ<sub>10 </sub>after trauma was shown to be protective because it significantly lowered the increased MDA levels (<it>p </it>< 0.05). Comparing the superoxide dismutase (SOD) levels of the four groups, trauma + CoQ<sub>10 </sub>group had SOD levels ranging between those of sham group and traumatic brain-injury group, and no statistically significant increase was detected. Histopathological results showed a statistically significant difference between the CoQ<sub>10 </sub>and the other trauma-subjected groups with reference to vascular congestion, neuronal loss, nuclear pyknosis, nuclear hyperchromasia, cytoplasmic eosinophilia, and axonal edema (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>Neuronal degenerative findings and the secondary brain damage and ischemia caused by oxidative stress are decreased by CoQ<sub>10 </sub>use in rats with traumatic brain injury.</p

    Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Get PDF
    <p>Abstract</p> <p>Background/Aims</p> <p>Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q<sub>10 </sub>contributes to intracellular ROS regulation. Coenzyme Q<sub>10 </sub>beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q<sub>10 </sub>complementing effect on tamoxifen receiving breast cancer patients.</p> <p>Methods</p> <p>In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC) on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2) activity in MCF-7 cell line.</p> <p>Results and Discussion</p> <p>Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner.</p> <p>Conclusions</p> <p>Collectively, the present study highlights the significance of Coenzyme Q<sub>10 </sub>effect on the cell invasion/metastasis effecter molecules.</p

    Thermoluminescence behaviour of europium doped magnesium silicate after beta exposure

    No full text
    This article presents a detailed analysis of beta ray exposed thermoluminescence response of a series of Eu3+ doped (0.5-10 mol%) Mg2SiO4 nanocrystalline samples successfully synthesized through solid state reaction method. Optimizing the doping concentration of Eu3+ ion in Mg2SiO4 phosphor was found as 3 mol%. Two main peaks were seen at 246 degrees C and 374 degrees C and also low temperature peak at 78 degrees C. The intensities of these peaks were increased linearly with increasing beta absorbed dose. T-m-T-stop method was used to reveal trap levels. Variable heating rate and computerized glow curve deconvolution methods were also used to evaluate the number of peaks and kinetic parameters, namely activation energy and frequency factor. The results of a series of experiments carried out to investigate some fading characteristics of Mg2SiO4:Eu3+ were also presented. The findings suggest that thermoluminescence properties of Mg2SiO4:Eu(3+ )makes this material suitable and promising dosimetric phosphor material for medical applications.Scientific Research Projects of Cukurova UniversityCukurova University [FAY 2015 435]The authors thank the financial support from Scientific Research Projects of Cukurova University FAY 2015 435 project

    Response to Trevisson et al.

    No full text

    Thermoluminescence of β-particle induced Bern-4M muscovite

    No full text
    Bern-4M muscovite from Switzerland was investigated via X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and thermoluminescence (TL). Muscovite has the theoretical formula KAl2(AlSi3O10)(FOH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). Chemical analysis of the muscovite sample was carried out using EDS for major oxides. The results indicate that muscovite includes oxygen (59.1%), silicon (18.86%), and aluminum (15.22%) as major elements and contains low concentrations of potassium, magnesium, and sodium. In standard muscovites potassium use to be 10% and oxygen 47%, probably the sample was strongly lixiviated before the analysis. The thermoluminescence spectrum exhibits a wide glow peak located at 250 °C with a shoulder peak at high temperature region. Trap depth and frequency factor were calculated using Hoogenstraaten's method and found to be 1.16 eV and 1.4 × 1010 s−1, respectively. Reproducibility test indicated that the values within ±5% were obtained after 15 cycles. The storage time experiments were performed for different time periods up to 1 week for dark fading. © 2020 Elsevier Lt
    corecore