1,564 research outputs found

    Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry

    Get PDF
    Modulated electroreflectance spectroscopy ΔR/R\Delta R/R of semiconductor self-assembled quantum dots is investigated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic description of the electroreflectance spectrum and optical response in terms of an external electric field (F{\bf F}) and lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters involved in the ΔR/R\Delta R/R spectrum have been considered. Using the effective mass formalism the energies and the electronic states as a function of F{\bf F} and dot parameters are calculated. Also, in the framework of the strongly confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are derived in the cases of the light wave vector perpendicular and parallel to % {\bf F}. Detailed calculation of the Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures. Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical distribution on size is considered, explaining the main observed characteristic in the electroreflectance spectra

    Persistent X-Ray Photoconductivity and Percolation of Metallic Clusters in Charge-Ordered Manganites

    Full text link
    Charge-ordered manganites of composition Pr1−x(Ca1−ySry)xMnO3\rm Pr_{1-x}(Ca_{1-y}Sr_{y})_{x}MnO_3 exhibit persistent photoconductivity upon exposure to x-rays. This is not always accompanied by a significant increase in the {\it number} of conduction electrons as predicted by conventional models of persistent photoconductivity. An analysis of the x-ray diffraction patterns and current-voltage characteristics shows that x-ray illumination results in a microscopically phase separated state in which charge-ordered insulating regions provide barriers against charge transport between metallic clusters. The dominant effect of x-ray illumination is to enhance the electron {\it mobility} by lowering or removing these barriers. A mechanism based on magnetic degrees of freedom is proposed.Comment: 8 pages, 4 figure

    On dispersive energy transport and relaxation in the hopping regime

    Full text link
    A new method for investigating relaxation phenomena for charge carriers hopping between localized tail states has been developed. It allows us to consider both charge and energy {\it dispersive} transport. The method is based on the idea of quasi-elasticity: the typical energy loss during a hop is much less than all other characteristic energies. We have investigated two models with different density of states energy dependencies with our method. In general, we have found that the motion of a packet in energy space is affected by two competing tendencies. First, there is a packet broadening, i.e. the dispersive energy transport. Second, there is a narrowing of the packet, if the density of states is depleting with decreasing energy. It is the interplay of these two tendencies that determines the overall evolution. If the density of states is constant, only broadening exists. In this case a packet in energy space evolves into Gaussian one, moving with constant drift velocity and mean square deviation increasing linearly in time. If the density of states depletes exponentially with decreasing energy, the motion of the packet tremendously slows down with time. For large times the mean square deviation of the packet becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.

    Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes

    Full text link
    A universal scaling function, describing the crossover between the Mott and the Efros-Shklovskii hopping regimes, is derived, using the percolation picture of transport in strongly localized systems. This function is agrees very well with experimental data. Quantitative comparison with experiment allows for the possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte

    Micro-class mobility: social reproduction in four countries

    Full text link
    In the sociological literature on social mobility, the long-standing convention has been to assume that intergenerational reproduction takes one of two forms, either a categorical form that has parents passing on a big-class position to their children, or a gradational form that has parents passing on their socioeconomic standing to their children. These conventional approaches ignore in their own ways the important role that occupations play in transferring advantage and disadvantage from one generation to the next. In log-linear analyses of nationally representative data from the United States, Sweden, Germany, and Japan, we show that (a) occupations are an important conduit for reproduction, (b) the most extreme rigidities in the mobility regime are only revealed when analyses are carried out at the detailed occupational level, and (c) much of what shows up as big-class reproduction in conventional mobility analyses is in fact occupational reproduction in disguise. Although the four countries studied here differ in the extent to which the occupational form has been institutionalized, we show that it is too prominent to ignore in any of these countries. Even in Japan, which has long been regarded as distinctively 'deoccupationalized,' we find evidence of extreme occupational rigidities. These results suggest that an occupational mechanism for reproduction may be a fundamental feature of all contemporary mobility regimes. [author's abstract

    On the structure of the energy distribution function in the hopping regime

    Full text link
    The impact of the dispersion of the transport coefficients on the structure of the energy distribution function for charge carriers far from equilibrium has been investigated in effective-medium approximation for model densities of states. The investigations show that two regimes can be observed in energy relaxation processes. Below a characteristic temperature the structure of the energy distribution function is determined by the dispersion of the transport coefficients. Thermal energy diffusion is irrelevant in this regime. Above the characteristic temperature the structure of the energy distribution function is determined by energy diffusion. The characteristic temperature depends on the degree of disorder and increases with increasing disorder. Explicit expressions for the energy distribution function in both regimes are derived for a constant and an exponential density of states.Comment: 16 page

    Dissipative Quantum Systems with Potential Barrier. General Theory and Parabolic Barrier

    Get PDF
    We study the real time dynamics of a quantum system with potential barrier coupled to a heat-bath environment. Employing the path integral approach an evolution equation for the time dependent density matrix is derived. The time evolution is evaluated explicitly near the barrier top in the temperature region where quantum effects become important. It is shown that there exists a quasi-stationary state with a constant flux across the potential barrier. This state generalizes the Kramers flux solution of the classical Fokker-Planck equation to the quantum regime. In the temperature range explored the quantum flux state depends only on the parabolic approximation of the anharmonic barrier potential near the top. The parameter range within which the solution is valid is investigated in detail. In particular, by matching the flux state onto the equilibrium state on one side of the barrier we gain a condition on the minimal damping strength. For very high temperatures this condition reduces to a known result from classical rate theory. Within the specified parameter range the decay rate out of a metastable state is calculated from the flux solution. The rate is shown to coincide with the result of purely thermodynamic methods. The real time approach presented can be extended to lower temperatures and smaller damping.Comment: 29 pages + 1 figure as compressed ps-file (uufiles) to appear in Phys. Rev.

    Disrupted Ultradian activity rhythms and Differential expression of several clock genes in interleukin-6-Deficient Mice

    Get PDF
    The characteristics of the cycles of activity and rest stand out among the most intensively investigated aspects of circadian rhythmicity in humans and experimental animals. Alterations in the circadian patterns of activity and rest are strongly linked to cognitive and emotional dysfunctions in severe mental illnesses such as Alzheimer's disease (AD) and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been prominently associated with the pathogenesis of AD and MDD. However, the potential involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity through the characterization of patterns of behavioral locomotor activity in IL-6 knockout (IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length of the circadian period or the amount of locomotor activity under either light-entrained or free-running conditions. IL-6 KO mice also presented a normal phase shift in response to light exposure at night. However, the temporal architecture of the behavioral rhythmicity throughout the day, as characterized by the quantity of ultradian activity bouts, was significantly impaired under light-entrained and free-running conditions in IL-6 KO. Moreover, the assessment of clock gene expression in the hippocampus, a brain region involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, we propose IL-6-dependent circadian misalignment as a common pathogenetic principle in some neurodegenerative and neuropsychiatric disorders

    Panel Discussion On Lipid Metabolism In Cardiovascular Disease†

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111126/1/jgs00741.pd

    Use of robust multivariate linear mixed models for estimation of genetic parameters for carcass traits in beef cattle

    Get PDF
    Assumptions of normality of residuals for carcass evaluation may make inferences vulnerable to the presence of outliers, but heavy-tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. We compare estimates of genetic parameters by fitting multivariate Normal (MN) or heavy-tail distributions (multivariate Student’s t and multivariate Slash, MSt and MS) for residuals in data of hot carcass weight (HCW), longissimus muscle area (REA) and 12th to 13th rib fat (FAT) traits in beef cattle using 2475 records from 2007 to 2008 from a large commercial operation in Nebraska. Model comparisons using deviance information criteria (DIC) favoured MSt over MS and MN models, respectively. The posterior means (and 95% posterior probability intervals, PPI) of v for the MSt and MS models were 5.89±0.90 (4.35, 7.86) and 2.04±0.18 (1.70, 2.41), respectively. Smaller values of posterior densities of v for MSt and MS models confirm that the assumption of normally distributed residuals is not adequate for the analysis of the data set. Posterior mean (PM) and posterior median (PD) estimates of direct genetic variances were variable with MSt having the highest mean value followed by MS and MN, respectively. Posterior inferences on genetic variance were, however, comparable among the models for FAT. Posterior inference on additive heritabilities for HCW, REA and FAT using MN, MSt and MS models indicated similar and moderate heritability comparable with the literature. Posterior means of genetic correlations for carcass traits were variable but positive except for between REA and FAT, which showed an antagonistic relationship. We have demonstrated that genetic evaluation and selection strategies will be sensitive to the assumed model for residuals
    • 

    corecore