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ORIGINAL ARTICLE

Use of robust multivariate linear mixed models for estimation of
genetic parameters for carcass traits in beef cattle
S.O. Peters1, K. Kizilkaya2,3, D.J. Garrick2, R.L. Fernando2, E.J. Pollak4, R.M. Enns5, M. De Donato6,7,
O.O. Ajayi6 & I.G. Imumorin6

1 Department of Animal Science, Berry College, Mount Berry, GA, USA

2 Department of Animal Science, Iowa State University, Ames, IA, USA

3 Department of Animal Science, Adnan Menderes University, Aydin, Turkey

4 Roman L. Hruska US Meat Animal Research Center, USDA-ARS, Clay Center, NE, USA

5 Department of Animal Science, Colorado State University, Fort Collins, CO, USA

6 Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA

7 IIBCA, Universidad de Oriente, Cumana, Venezuela

Keywords

Carcass growth; genetic parameters; heavy-

tailed distributions; robust models.

Correspondence

S. Peters, Department of Animal Science,

Berry College, Mount Berry, GA 30149, USA.

Tel: (706) 368 6919;

Fax: (706) 236 2223;

E-mail: speters@berry.edu

Received: 16 July 2013;

accepted: 10 April 2014

Summary

Assumptions of normality of residuals for carcass evaluation may make

inferences vulnerable to the presence of outliers, but heavy-tail densities

are viable alternatives to normal distributions and provide robustness

against unusual or outlying observations when used to model the densities

of residual effects. We compare estimates of genetic parameters by fitting

multivariate Normal (MN) or heavy-tail distributions (multivariate Stu-

dent’s t and multivariate Slash, MSt and MS) for residuals in data of hot car-

cass weight (HCW), longissimus muscle area (REA) and 12th to 13th rib

fat (FAT) traits in beef cattle using 2475 records from 2007 to 2008 from a

large commercial operation in Nebraska. Model comparisons using devi-

ance information criteria (DIC) favoured MSt over MS and MN models,

respectively. The posterior means (and 95% posterior probability intervals,

PPI) of v for the MSt and MS models were 5.89 � 0.90 (4.35, 7.86) and

2.04 � 0.18 (1.70, 2.41), respectively. Smaller values of posterior densities

of v for MSt and MS models confirm that the assumption of normally dis-

tributed residuals is not adequate for the analysis of the data set. Posterior

mean (PM) and posterior median (PD) estimates of direct genetic variances

were variable with MSt having the highest mean value followed by MS

and MN, respectively. Posterior inferences on genetic variance were, how-

ever, comparable among the models for FAT. Posterior inference on addi-

tive heritabilities for HCW, REA and FAT using MN, MSt and MS models

indicated similar and moderate heritability comparable with the literature.

Posterior means of genetic correlations for carcass traits were variable but

positive except for between REA and FAT, which showed an antagonistic

relationship. We have demonstrated that genetic evaluation and selection

strategies will be sensitive to the assumed model for residuals.

Introduction

The evaluation of carcass quality and its prerequisite

estimation of genetic parameters are of considerable

importance in genetic improvement for beef cattle

(Marshall 1994; Crews & Kemp 2002; Utrera & Van

Vleck 2004; MacNeil et al. 2010). The number of car-

cass records for most breeds is low when compared

to other traits such as birth, weaning, yearling, scro-

tal circumference and other reproduction data due to
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cost and difficulty of collecting carcass data (Bertrand

et al. 2001; Crews & Kemp 2001, 2002). Like most

traits, the data for carcass quality have measurement

errors and other types of random non-genetic varia-

tion that comprise the residual effects, which are

often assumed to be normally distributed with zero

mean and common variance (Kizilkaya et al. 2002,

2010; Cardoso et al. 2005, 2007; Kizilkaya & Tempel-

man 2005). However, carcass data like most field

data exhibit more outliers than would be expected if

the distributions of residual effects really were nor-

mally distributed. Heavy-tailed densities have been

reported to be viable alternatives to assuming Normal

distributions and provide robustness against unusual

or outlying observations when used to model the

densities of residual effects (Kizilkaya et al. 2003,

2010; Kizilkaya & Tempelman 2005; Peters et al.

2013). Among a number of alternative distributions

that exhibit heavy tails, Student’s t and Slash distribu-

tions are appealing because they are symmetric and

converge to Normal distributions as their correspond-

ing degrees of freedom exceed 50 and 20, respec-

tively (Peters et al. 2013). Many authors have

advocated the use of multivariate approaches to

genetic evaluation not only because it is more accu-

rate and precise but also because even moderately

inheritable traits can benefit from information from

correlated traits (Stranden & Gianola 1999; Kizilkaya

et al. 2003, 2010; Kizilkaya & Tempelman 2005).

Genetic parameter estimation for carcass traits has

been reported to be hampered by the small number

of records available (Meyer 2007). Multivariate

approaches that directly model all measurements on

one trait category, such as carcass traits, by estimat-

ing covariance structure may better utilize the infor-

mation in the data set and provide trait-specific

estimates of genetic effects at the cost of greater com-

putational burden and more complex interpretation

of the results (Meyer 2007; Peters et al. 2013). Meyer

(2007) published multivariate restricted maximum

likelihood estimates of genetic (co)variances for car-

cass traits of Angus cattle, by fitting a number of

reduced rank and factor analytic models. There are

reports of application of heavy-tailed distributions to

growth and calving difficulty data in literature (Kizil-

kaya et al. 2003; Peters et al. 2013), but there are no

reports of application of heavy-tailed distribution to

carcass data. In this study, we compared results

assuming multivariate Normal distributions to those

fitting multivariate Student’s t (MSt) or multivariate

Slash (MS) distributions with unknown degrees of

freedom for the residuals in multivariate carcass data.

Materials and methods

Data set

Carcass records for this study came from a large com-

mercial ranch with a composite cattle population of

approximately 20 000 animals located in the sand

hills of Nebraska. A total of 2475 hot carcass weight

(HCW), longissimus muscle area (REA) and fat thick-

ness (FAT) records were obtained from 2007 to 2008.

The information contained in the data set included

pedigree information, contemporary groups, feedlot

pen and gender. The pedigree of 7616 individuals was

used to define additive genetic effects. Contemporary

groups with 18 levels created by combining years and

pastures were used as a fixed effect in the analysis

(Peters et al. 2013). In addition, the factors of feedlot

pen with 11 levels and gender with bull, steer, heifers

and cow levels also were considered as other fixed

effects in the analysis. A summary of data set across

contemporary group, feedlot pen and gender effects is

shown in Table 1.

Statistical analysis

Multiple trait analysis of HCW, REA and FAT was car-

ried out using a scale-mixture MN model (Rosa et al.

2003) which is defined for animal i as follows:

yi ¼ Xibþ Ziaþ eiffiffiffiffi
ki

p ; ð1Þ

where yi = [yi,HCW, yi,REA, yi,FAT]
0 is the vector of

phenotypic values of HCW, REA and FAT for ani-

mal i; b includes fixed effects of contemporary

group, feedlot pen and gender; a is a vector of ran-

dom genetic animal effects for HCW, REA and FAT

for 7616 animals in the pedigree. Xi and Zi are the

corresponding incidence matrices for fixed and ran-

dom genetic effects. The residuals ei = [ei,HCW, ei,

REA, ei,FAT]
0 were assumed to follow a MN distribu-

tion with null means and (co)variance matrix R0,

where

R0 ¼
r2eHCW reHCW;REA

reHCW;FAT

reREA;HCW r2eREA reREA;FAT
reFAT;HCW reFAT;REA r2eFAT

2
4

3
5:

The scalar ki is an unknown positive random variable

for animal i, independent of ei.

A flat prior was assumed for the fixed effects (b).

Genetic effects (a) were assumed to be distributed as

MN with null mean vector (0) and (co)variance

matrix G0 ⊗ A, where A is the numerator relation-

ship matrix, G0 is the (co)variance matrix

© 2014 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2014) 1–92
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G0 ¼
r2aHCW raHCW;REA

raHCW;FAT

raREA;HCW r2aREA raREA;FAT
raFAT;HCW raFAT;REA r2aFAT

2
4

3
5

and ⊗ denotes the Kronecker product.

Covariance matrices G0 and R0 are assumed to fol-

low, a priori, a scaled three-dimensional inverse Wis-

hart distributions IW(VG, vG) and IW(VR, vR) with VG,

VR and vG, vR parameters, respectively. However, flat

prior distributions were assigned to G0 and R0 by set-

ting VG = VR = 0 and vG = vR = �4 (Sorensen &

Gianola 2002).

In the MN model, there is no distributional specifi-

cation for ki in equation (1), because 1 assigned to ki

for all i = 1, 2,. . .,n. In the MSt model with vMSt

degrees of freedom, the distribution of ki in equa-

tion (1) is a Gamma(vMSt/2, vMSt/2) distribution where

vMSt > 0. A prior of p(vMSt) = 1/(1 + vMSt)
2 for

vMSt > 2 was assigned to vMSt (Kizilkaya et al. 2003).

In the MS model, the distribution of ki in equation (1)

is a Beta (v, 1) distribution with density function

pðkijvMSÞ ¼ vMSk
vMS�1
i where 0 < ki ≤ 1, and vMS is the

degrees of freedom parameter. A truncated conjugate

Gamma prior (a, b) was assigned to vMS, in which the

shape parameter a is equal to 0.015 and the inverse

scale parameter b is equal to 0.001, so that the

prior density is then pðvMSja; bÞ / va�1
MS exp �bvMSf g

I vMS [ 1f g with vMS > 1 (Kizilkaya et al. 2003, 2010).

Inferences on parameters of interest in MSt and

MS models can be made from the conditional pos-

terior distributions using Markov chain Monte Carlo

(MCMC) methods. The fully conditional posterior

distributions of each of the unknown parameters

are used to generate proposal samples from the tar-

get distribution. The fully conditional posterior dis-

tributions of fixed (b) and genetic (a) effects are

MN with mean ½b̂; â� and covariance matrix C,

where ½b̂; â� are solutions to Henderson’s mixed

model equations constructed with heterogeneous

residual variances R0k
�1
i , and C is the inverse of this

mixed model coefficient matrix (Stranden & Gianola

1999; Kizilkaya et al. 2010). The (co)variance matri-

ces G0 and R0 have inverse Wishart conditional pos-

terior distributions, which are constructed from

½b̂; â; k̂� where k̂ is solution for ki (Sorensen & Gian-

ola 2002).

The fully conditional posterior of ki for the MSt

model is a Gamma distribution with shape (vMSt + 3)/

2 and scale 0:5½eiR�1
0 ei þ vMSt�. The fully conditional

posterior distribution of vMSt for the MSt model does

not have a standard form, and a random-walk

Metropolis–Hasting (MH) algorithm (Chib & Green-

berg 1995) was used to draw samples for vMSt (Kizil-

kaya et al. 2003, 2010).

The fully conditional posterior distribution of ki for
MS model is a Truncated-Gamma distribution for

0 < ki < 1, with shape vMS + 3/2 and scale 0:5

½eiR�1
0 ei�. The fully conditional posterior distribution

of vMS is a Gamma distribution Gamma nþ a;ð
b�Pn

i¼1 log kiÞ with vMS > 1 (Rosa et al. 2003).

Marginal residual variances, heritabilities and genetic

correlations for multivariate Normal, Student’s t and

Slash models

The marginal residual (co)variance parameters (RE)

for MN, MSt and MS models were calculated using

Table 1 Summary statistics for hot carcass weight (HCW), longissimus

muscle area (REA) and fat thickness (FAT) obtained from beef cattle in

Rex Ranch across gender, contemporary group and feedlot pen effects

Effects n HCW (kg) REA (cm2) FAT (cm)

Gender

Bull 1227 352.7 � 32.6 81.6 � 8.4 1.31 � 0.41

Steer 1209 356.7 � 32.6 82.8 � 8.2 1.30 � 0.42

Cow 23 358.9 � 32.3 83.1 � 11.1 1.33 � 0.44

Heifer 16 344.3 � 36.3 79.9 � 6.3 1.21 � 0.37

Contemporary group

2007_1 231 351.4 � 37.8 83.5 � 8.8 1.19 � 0.42

2007_2 197 358.0 � 32.6 83.1 � 9.0 1.42 � 0.42

2007_3 144 361.0 � 33.9 84.6 � 8.0 1.30 � 0.40

2007_4 91 369.8 � 26.9 84.3 � 9.4 1.33 � 0.36

2007_5 66 365.1 � 29.4 84.1 � 9.3 1.32 � 0.43

2007_6 337 362.4 � 30.8 83.9 � 9.1 1.28 � 0.40

2007_7 153 344.0 � 31.1 82.7 � 9.5 1.27 � 0.43

2007_8 14 342.3 � 35.1 78.6 � 11.6 1.34 � 0.49

2008_1 232 351.5 � 30.3 81.1 � 7.3 1.38 � 0.41

2008_2 176 345.7 � 30.2 79.3 � 7.5 1.30 � 0.41

2008_3 115 354.1 � 30.7 78.6 � 6.5 1.44 � 0.42

2008_4 27 328.2 � 38.1 79.4 � 7.3 1.06 � 0.42

2008_9 28 342.5 � 25.7 79.3 � 5.8 1.22 � 0.38

2008_5 112 341.0 � 28.6 80.3 � 7.7 1.19 � 0.38

2008_6 386 357.2 � 31.0 82.9 � 7.1 1.32 � 0.43

2008_10 68 349.0 � 32.1 79.2 � 6.1 1.22 � 0.37

2008_11 71 354.3 � 37.4 79.4 � 7.2 1.33 � 0.34

2008_8 27 351.5 � 36.2 81.6 � 8.0 1.30 � 0.42

Feedlot pen

1 235 349.3 � 34.1 83.1 � 9.5 1.27 � 0.44

2 255 362.0 � 27.5 83.3 � 9.0 1.33 � 0.40

3 171 367.9 � 30.4 84.8 � 9.5 1.25 � 0.37

4 255 361.9 � 31.4 83.6 � 8.7 1.43 � 0.41

5 244 346.4 � 39.0 82.9 � 8.3 1.17 � 0.41

6 73 368.4 � 25.9 86.5 � 9.4 1.31 � 0.39

7 194 350.3 � 33.9 79.7 � 6.8 1.27 � 0.37

8 268 353.9 � 31.0 80.7 � 7.1 1.47 � 0.43

9 256 349.1 � 30.2 79.1 � 7.3 1.25 � 0.36

10 263 348.5 � 31.4 81.5 � 7.3 1.27 � 0.42

11 261 356.2 � 32.1 82.8 � 7.4 1.29 � 0.42

Overall 2475 354.7 � 32.7 82.2 � 8.3 1.30 � 0.41

© 2014 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2014) 1–9 3
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RE = R0, RE = R0 (vMSt)/(vMSt – 2) where vMSt > 2

and RE = R0 (vMS)/(vMS – 1) where vMS > 1, respec-

tively, as given by Stranden and Gianola (1999) and

Cardoso et al. (2005).

Direct (h2aj;k) heritability and genetic correlation (rj,j0,k)

estimates were obtained from estimates of (co)vari-

ance components based on: h2aj;k ¼
�
r2aj;k

�� �
r2aj;k þ r2Ej;k

�

and rj;j0;k ¼
�
raj;j0 ;k

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2aj;kr

2
aj0 ;k

q �
where j and j 6¼ j0 rep-

resent traits HCW, REA or FAT, and k represents the

model for residuals being either MN, MSt or MS

(Kizilkaya et al. 2010; Peters et al. 2013).

Markov chain Monte Carlo implementation and model

comparison

Three separate MCMC chains of 360 000 cycles were

generated using different starting values for each of

the MN, MSt or MS models. Graphical inspection

(time series traces) of the iterations were used to

determine a burn-in period of 10 000 defined as the

number of iterations discarded at the start of the

MCMC chain to ensure sampling from the correct

marginal distributions. A further 350 000 post-burn-

in MCMC cycles were generated for each of the MN,

MSt or MS models. Every successive post-burn-in

sample was retained, so that 350 000 samples were

used to infer posterior distributions of unknown

parameters. Posterior means of the parameters were

obtained from their respective marginal posterior den-

sities. Interval estimates were determined as posterior

probability intervals (PPI) obtained from the 2.5 and

97.5 percentiles of each posterior density to provide

95% PPI.

The effective sample size (ESS) of the samples

(Sorensen et al. 1995) was used to determine the

effectiveness of MCMC mixing after burn-in period.

The ESS is an estimate on the information content of

the MCMC samples in terms of an equivalent number

of independent samples.

Model comparisons were carried out using the devi-

ance information criteria (DIC) proposed by Spiegel-

halter et al. (2002) for alternative constructions of

hierarchical models. The DIC is based on the posterior

distribution of the deviance statistic, which is �2

times the sampling distribution of the data as specified

in the first stage of a hierarchical model. The calcula-

tion of DIC was carried out as the sum of average

Bayesian deviance (�D) plus the effective number of

parameters (pD) with respect to the models MSt, MS

or MN. A smaller DIC value was used as an indicator

of better fit to the multivariate data set (Peters et al.

2013).

Results and discussion

The overall mean value of 354.7 kg for HCW recorded

in this study (Table 1) is higher than values reported

by Riley et al. (2002) for Brahmans; Crews et al.

(2003) for Simmental and Meyer (2007) for Austra-

lian Angus. This may be due to the fact the animals

evaluated are composites or a result of breed differ-

ences. Marshall (1994) reported that carcass composi-

tion tends not to be improved by heterosis, but he

went further to conclude that heterotic effects on car-

cass weight at a given age are positive.

The overall mean value of 82.2 cm2 for REA pre-

sented in Table 1 is lower than those reported for

Charolais, Gelbvieh and Limousin in Marshall (1994).

They are also 10 cm2 lower than values reported by

Riley et al. (2002) for Brahmans raised in Florida.

Nephawe et al. (2004) also reported a slightly lower

value from the data of the Germplasm Evaluation Pro-

gram (GPE) at the U.S. Meat Animal Research Center

(USMARC), Clay Center, NE. The differences herein

are likely the result of the bull selection programme of

the commercial ranch and of breed differences. For

example, this population contains no Bos indicus influ-

enced animals.

The overall mean value of 1.30 cm for FAT reported

in this study is higher than values reported by Peters

et al. (2012) for ultrasound measure of FAT in Bran-

gus females but comparable to values reported by

Nephawe et al. (2004).

Based on the raw trace plots of samples of 360 000

iterations, it was determined that 10 000 iterations

were sufficiently long burn-in period for all variance–
covariance components, degrees of freedom parame-

ters and within all chains. The length of the burn-in

period was enough to eliminate the effect of the dif-

ferent starting values.

Table 2 shows the estimated ESS for each variance–
covariance component and degrees of freedom. They

are based on a sum of separate determinations from

each of the three separate chains. The ESS in Table 2

was from 302 to 6490, pointing out sufficient MCMC

mixing for parameters. The ESS of 100 was suggested

as the minimum ESS for reliable statistical inference

(Bink et al. 1998). The ESS for variance–covariances
from robust model (MSt and MS) was found to be

higher than those from normal model (MN), indicat-

ing better mixing in the robust models.

Multivariate analyses of carcass traits produced DIC

values of 41 998, 40 621 and 41 058 for MN, MSt and

MS, respectively. Kizilkaya et al. (2002, 2003)

reported that MSt was the best-fitting model based on

smaller DIC values. This result was consistent with

© 2014 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2014) 1–94
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previous studies that showed that Student’s t models

were better fit to clinical mastitis (Chang et al. 2006),

postweaning gain (Cardoso et al. 2007), birthweight

and gestation length traits when compared to slash or

Normal distributions (Kizilkaya et al. 2010). Cardoso

et al. (2005) demonstrated that normally distributed

residuals are not the best fit for growth data. They

looked at three alternative specifications for the mar-

ginal density of residuals (i.e. Normal, Student’s t or

Slash). In their study, pseudo-Bayes factor derived

from log marginal likelihood function showed that a

heteroskedastic t-error model provided the best fit to

the data among the six different residual specifications

considered. They concluded that the conventional

homoskedastic Gaussian error model in which residu-

als were assumed Normal, independently and identi-

cally distributed with common residual variance, was

the poorest choice for the data set. To our knowledge,

this is the first comparison and application of heavy-

tailed distribution to carcass data in beef cattle.

The posterior distributions of v from MSt and MS

models are in Figure 1. The posterior means of v for

MSt and MS models were 5.89 and 2.04, respectively,

with 95% of PPI of 4.35–7.86 and 1.70–2.41
(Table 3). These densities characterized by small val-

ues of v for MSt and MS models, which are less than

50 and 20 further supporting that the assumption of

normally distributed residuals is inadequate for analy-

sis of HCW, REA and FAT data sets. These results are

similar to previous reports of Albert and Chibs (1993),

Cardoso et al. (2005); Kizilkaya et al. (2002, 2010). All

these authors found that a low value for the degrees

of freedom parameter suggesting that the underlying

distribution was not normal.

Posterior mean and 95% PPI estimates of r2a genetic

variances from MN, MSt and MS models for HCW,

REA and FAT are in Table 4. PM estimate of r2a for

HCW was highest (337.48 � 85.18) for MSt, followed

by MS (256.14 � 87.69) with the least value

(156.60 � 92.39) reported for MN. PM estimate of r2a
for REA was highest (34.31 � 5.71) in MSt followed

by MS model, while the lowest value was produced

by MN model (Table 4). The PM estimates of r2a for

FAT were 0.04 � 0.02, 0.04 � 0.01 and 0.03 � 0.01

for MN, MSt and MS, which were comparable for the

three models. The 95% PPI estimates of r2a from MN,

MSt and MS models for HCW, REA or FAT overlapped

indicating non-significant difference between PM esti-

mates of those models for HCW, REA or FAT.

The PM of genetic covariances between additive

effects is reported in Table 5. The 95% PPI for covari-

ance between HCW and REA, and covariance

between HCW and FAT included zero for MN, MSt

and MS models indicating that the correlation

between HCW and REA, and between HCW and FAT

is non-significant. The 95% PPI for covariance

between REA and FAT did not include zero for MSt

and MS models indicating significant antagonistic

Table 2 Effective sample sizes (ESS) for additive genetic variance–co-

variances (r2a) using multivariate Normal (MN), Student’s t (MSt) or Slash

(MS) models for hot carcass weight (HCW), longissimus muscle area

(REA) and fat thickness (FAT)

Parameter MN MSt MS

r2aHCW 374 1264 781

r2aREA 1112 2358 1788

r2aFAT 681 919 807

rHCW,REA 425 2417 1332

rHCW,FAT 302 1452 842

rREA,FAT 673 2417 1529

v – 2541 6490

MSt
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Figure 1 Posterior densities of degrees of freedom (v) obtained from multivariate Student’s t (MSt) and Slash (MS) models fitted to hot carcass weight

(HCW), longissimus muscle area (REA) and fat thickness (FAT).
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relationship between REA and FAT. The covariance

was, however, non-significant for FAT using the MN

model (Table 5).

Posterior densities of h2a estimates from MN, MSt

and MS models for HCW, REA and FAT are in

Figure 2. PM estimates of 0.34 � 0.08 and

0.25 � 0.09 for MSt and MS were higher than

0.16 � 0.09 for MN in HCW (Table 6). These mean

values were higher than those reported by Crews et al.

(2003). It is, however, important to note that the h2a
from MSt in this study were within the range of h2a
(0.31–0.64) provided by Marshall (1994) for a popula-

tion that included Angus, Hereford, Simmental and

many unidentified cross-breds and would therefore

be of similar breed type as the composites in this

study. Utrera and Van Vleck (2004) reported a mean

heritability value of 0.40 from meta-analyses of 72

papers published between 1962 and 2004. They noted

that heritability for HCW varied widely in the litera-

ture, and it could be due to breed group, method of

estimation, number of records, types of effect included

in the model, sex and measurement errors. For REA,

the posterior mean (0.51 � 0.09) of h2a for MSt was

the highest, followed by MS (0.45 � 0.09) and then

MN (0.43 � 0.12) models (Table 6). The mean values

from the three models compared seemed different;

however, the respective 95% PPI for MN, MSt and

MS models did overlap. The values reported in this

study are higher than ultrasound measure of REA

reported by Peters et al. (2012) but within the range

reported in literature (Riley et al. 2002; Crews et al.

2003; Utrera & Van Vleck 2004). The moderate mean

values of heritability for REA from this population

further confirm that this important carcass trait will

respond to selection. For FAT, the PM estimate of h2a
from MN (0.24 � 0.09) and MSt (0.24 � 0.08) mod-

els was found to be same; however, MSt model

resulted in narrower 95% PPI (0.10; 0.39) of h2a than

that (0.09; 0.45) from MN model. The smaller value

(0.20 � 0.07) was found when the data were mod-

elled with MS. The heritability value reported for FAT

in this study is lower than many values reported in lit-

erature (Marshall 1994; Peters et al. 2012) but low

heritability estimates for FAT have also been reported

Table 4 Posterior inference of additive genetic variance (r2a) for hot carcass weight (HCW), longissimus muscle area (REA) and fat thickness (FAT)

using multivariate Normal (MN), Student’s t (MSt) or Slash (MS) models

Genetic

variance

MN MSt MS

PM � SD PD 95% PPI PM � SD PD 95% PPI PM � SD PD 95% PPI

r2aHCW 156.60 � 92.39 131.14 43.99; 384.08 337.48 � 85.18 338.69 172.35; 502.15 256.14 � 87.69 255.13 95.44; 429.30

r2aREA 28.56 � 7.80 28.29 14.22; 44.31 34.31 � 5.71 34.35 23.00; 45.37 30.85 � 6.09 30.64 19.47; 42.97

r2aFAT 0.04 � 0.02 0.04 0.01; 0.08 0.04 � 0.01 0.04 0.02; 0.07 0.03 � 0.01 0.03 0.01; 0.06

PM, posterior mean; PD, posterior median; 95% PPI, 95% posterior probability interval; SD, posterior standard deviation.

Table 5 Posterior inference on additive (a) genetic covariances for hot carcass weight (HCW), longissimus muscle area (REA) and fat thickness (FAT)

using multivariate Normal (MN), Student’s t (MSt) and Slash (MS) models

Genetic covariance

MN MSt MS

PM � SD PD 95%PPI PM � SD PD 95%PPI PM � SD PD 95%PPI

rHCW;REA 20.42 � 23.00 19.50 �22.19; 65.34 26.63 � 14.19 26.70 �1.13; 54.41 15.24 � 15.67 15.44 �14.88; 45.99

rHCW;FAT 0.06 � 1.07 0.03 �1.79; 2.20 0.55 � 0.66 0.56 �0.76; 1.83 0.15 � 0.66 0.13 �1.12; 1.48

rREA,FAT �0.41 � 0.30 �0.41 �0.98; 0.18 �0.53 � 0.16 �0.53 �0.85; �0.21 0.56 � 0.18 �0.56 �0.90; �0.19

PM, posterior mean; PD, posterior median; 95% PPI, 95% posterior probability interval; SD, posterior standard deviation.

Table 3 Posterior inference for degrees of freedom (v) for hot carcass weight (HCW), longissimus muscle area (REA) and fat thickness (FAT) using Stu-

dent’s t (MSt) and Slash (MS) models

Degrees of freedom

MSt MS

PM � SD PD 95% PPI PM � SD PD 95% PPI

v 5.89 � 0.90 5.82 4.35; 7.86 2.04 � 0.18 2.03 1.70; 2.41

PM, posterior mean; PD, posterior median; 95% PPI, 95% posterior probability interval; SD, posterior standard deviation.
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in other studies (Johnson et al. 1993; Moser et al.

1998). For example, Johnson et al. (1993) reported an

estimate of 0.14 in Brangus cattle. Moser et al. (1998)

reported a low heritability estimate of 0.11 in the

Brangus breed. These authors reasoned that the low

heritability estimates they obtained for FAT were

associated with the low phenotypic mean, probably

because of age and level of nutrition (Seroba et al.

2011).

Results from this study showed that differences in

posterior density between heavy-tailed distributions

and Normal distribution are consistent with the find-

ings of Kizilkaya et al. (2010) in their evaluation of

bivariate Student’s t and Normal models for gestation

length and birthweight for Piemontese cattle. It is

important to note, however, that in contrast to results

in this article, Cardoso et al. (2005) and Chang et al.

(2006) found no real difference in PM estimates for

heritabilities whether using Student’s t, Slash or Normal

models.

Posterior means of additive direct genetic correla-

tions are in Table 7. The posterior means of genetic

correlations between HCW and REA and between

HCW and FAT from MN, MSt and MS models were

Table 6 Posterior inference for heritabilities (h2a) for hot carcass weight (HCW), longissimus muscle area (REA) and fat thickness (FAT) using multivari-

ate Normal (MN), Student’s t (MSt) and Slash (MS) models

Heritability

MN MSt MS

PM � SD PD 95%PPI PM � SD PD 95%PPI PM � SD PD 95%PPI

h2aHCW 0.16 � 0.09 0.13 0.04; 0.38 0.34 � 0.08 0.34 0.17; 0.50 0.25 � 0.09 0.25 0.09; 0.43

h2aREA 0.43 � 0.12 0.43 0.22; 0.66 0.51 � 0.09 0.51 0.34; 0.67 0.45 � 0.09 0.45 0.29; 0.63

h2aFAT 0.24 � 0.09 0.23 0.09; 0.45 0.24 � 0.08 0.24 0.10; 0.39 0.20 � 0.07 0.19 0.08; 0.35

PM, posterior mean; PD, posterior median; 95% PPI, 95% posterior probability interval; SD, posterior standard deviation.
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Figure 2 Posterior densities of (h2a) heritabilities of hot carcass weight (HCW), longissimus muscle area (REA) and fat thickness (FAT) obtained from

multivariate Normal (MN), Student’s t (MSt) and Slash (MS) models.

Table 7 Posterior inference on genetic correlations between additive effects for hot carcass weight (HCW), longissimus muscle area (REA) and fat

thickness (FAT) using multivariate Normal (MN), Student’s t (MSt) and Slash (MS) models

Genetic correlation

MN MSt MS

PM � SD PD 95%PPI PM � SD PD 95%PPI PM � SD PD 95%PPI

rHCW,REA 0.31 � 0.37 0.31 �0.47; 0.92 0.24 � 0.12 0.25 �0.01; 0.44 0.16 � 0.17 0.18 �0.24; 0.45

rHCW,FAT �0.06 � 0.45 0.02 �0.83; 0.67 0.13 � 0.19 0.15 �0.33; 0.42 0.02 � 0.25 0.05 �0.62; 0.43

rREA,FAT �0.38 � 0.27 �0.41 �0.78; 0.23 �0.47 � 0.15 �0.46 �0.82; �0.20 �0.57 � 0.17 �0.57 �0.88; �0.23

PM, posterior mean; PD, posterior median; 95% PPI, 95% posterior probability interval; SD, posterior standard deviation.
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found to be low, and 95% PPI for these correlations

from the three models used in this study included 0

indicating that correlations between these traits are

non-significant. The posterior means of genetic corre-

lations between HCW and REA from MN, MSt and

MS models are lower than values reported in Riley

et al. (2002) for Brahman breed, but are within the

range (0.12–0.80) reported by Bertrand et al. (2001).

The genetic correlation between HCW and FAT in this

study is consistent with reports in the literature. The

genetic correlation between REA and FAT showed a

significant antagonistic relationship for MSt and MS

models, which is consistent with results from litera-

ture (Riley et al. 2002; Seroba et al. 2011).

Multivariate residual distributions can be assumed

Normal, Student’s t or Slash. Model comparisons using

DIC favoured MSt over MS and MN models, respec-

tively. Smaller PM values of v for MSt and MS mod-

els confirmed that the assumption of normally

distributed residuals was inadequate for analysis of

HCW, REA and FAT data sets. Our results support

an antagonistic genetic relationship between REA

and FAT.
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