211 research outputs found

    Specialization of neural mechanisms underlying face recognition in human infants

    Get PDF
    Newborn infants respond preferentially to simple face-like patterns, raising the possibility that the face-specific region, identified in the adult cortex are functioning from birth. We sought to evaluate this hypothesis by characterizing the specificity Of infants' electrocortical responses to faces in two ways: (1) comparing responses to faces of humans with those to faces of nonhuman primates; and 2) comparing responses to upright and inverted faces. Adults' face-responsive N170 event-related potential (ERP) component showed specificity to upright human faces that was not observable at any point in the ERPs Of infants. A putative "infant N170" did show sensitivity to the species of the face, but the orientation of the face did not influence processing until a later stage. These findings suggest a process of gradual specialization of cortical face processing systems during postnatal development

    Change in background context disrupts performance on visual paired comparison following hippocampal damage

    Get PDF
    The medial temporal lobe plays a critical role in recognition memory but, within the medial temporal lobe, the precise neural structures underlying recognition memory remain equivocal. in this study, visual paired comparison (VPC) was used to investigate recognition memory in a human patient (YR), who had a discrete lesion of the hippocampus, and a group of monkeys with neonatal hippocampal lesions, which included the dentate gyrus, and a portion of parahippocampal region. Participants were required to view a picture of an object on a coloured background. Immediately afterwards, this familiar object was shown again, this time paired with a novel object. All participants displayed a novelty preference, provided the background on which the objects were shown was the same as the one used during the learning phase. When the background of the familiar object was changed between initial familiarization and test, only the control subjects showed a novelty preference; the hippocampal-lesioned monkeys and patient YR showed null preference. The results are interpreted within Eichenbaum and Bunsey's [Eichenbaum, H., & Bunsey, M. (1995). On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired-associate learning. Current Directions in Psychological Science, 4, 19-23] proposal that the hippocampus facilitates the formation of a flexible representation of the elements that make up a stimulus whereas the parahippocampal region is involved in the formation of a fused representation. (C) 2009 Elsevier Ltd. All rights reserved

    Cultural modulation of face and gaze scanning in young children

    Get PDF
    Previous research has demonstrated that the way human adults look at others’ faces is modulated by their cultural background, but very little is known about how such a culture-specific pattern of face gaze develops. The current study investigated the role of cultural background on the development of face scanning in young children between the ages of 1 and 7 years, and its modulation by the eye gaze direction of the face. British and Japanese participants’ eye movements were recorded while they observed faces moving their eyes towards or away from the participants. British children fixated more on the mouth whereas Japanese children fixated more on the eyes, replicating the results with adult participants. No cultural differences were observed in the differential responses to direct and averted gaze. The results suggest that different patterns of face scanning exist between different cultures from the first years of life, but differential scanning of direct and averted gaze associated with different cultural norms develop later in life

    Sex categorization of faces: The effects of age and experience

    Get PDF
    The face own-age bias effect refers to the better ability to recognize the face from one's own age compared with other age groups. Here we examined whether an own-age advantage occurs for faces sex categorization. We examined 7- and 9-year-olds' and adults' ability to correctly categorize the sex of 7- and 9-year-olds and adult faces without external cues, such as hair. Results indicated that all ages easily classify the sex of adult faces. They succeeded in classifying the sex of child faces, but their performance was poorer than for adult faces. In adults, processing time increased, and a response bias (male response) was elicited for child faces. In children, response times remained constant, and no bias was observed. Experience with specific category of faces seems to offer some advantage in speed of processing. Overall, sex categorization is more challenging for child than for adult faces due to their reduced sexual dimorphic facial characteristics

    Infant cortex responds to other humans from shortly after birth

    Get PDF
    A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions

    The Other-Race Effect Develops During Infancy: Evidence of Perceptual Narrowing

    Get PDF
    Experience plays a crucial role in the development of face processing. In the study reported here, we investigated how faces observed within the visual environment affect the development of the face-processing system during the 1st year of life. We assessed 3-, 6-, and 9-month-old Caucasian infants’ ability to discriminate faces within their own racial group and within three otherrace groups (African, Middle Eastern, and Chinese). The 3-month-old infants demonstrated recognition in all conditions, the 6-month-old infants were able to recognize Caucasian and Chinese faces only, and the 9-month-old infants’ recognition was restricted to own-race faces. The pattern of preferences indicates that the other-race effect is emerging by 6 months of age and is present at 9 months of age. The findings suggest that facial input from the infant’s visual environment is crucial for shaping the face-processing system early in infancy, resulting in differential recognition accuracy for faces of different races in adulthood

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Visual Recognition of Age Class and Preference for Infantile Features: Implications for Species-Specific vs Universal Cognitive Traits in Primates

    Get PDF
    Despite not knowing the exact age of individuals, humans can estimate their rough age using age-related physical features. Nonhuman primates show some age-related physical features; however, the cognitive traits underlying their recognition of age class have not been revealed. Here, we tested the ability of two species of Old World monkey, Japanese macaques (JM) and Campbell's monkeys (CM), to spontaneously discriminate age classes using visual paired comparison (VPC) tasks based on the two distinct categories of infant and adult images. First, VPCs were conducted in JM subjects using conspecific JM stimuli. When analyzing the side of the first look, JM subjects significantly looked more often at novel images. Based on analyses of total looking durations, JM subjects looked at a novel infant image longer than they looked at a familiar adult image, suggesting the ability to spontaneously discriminate between the two age classes and a preference for infant over adult images. Next, VPCs were tested in CM subjects using heterospecific JM stimuli. CM subjects showed no difference in the side of their first look, but looked at infant JM images longer than they looked at adult images; the fact that CMs were totally naĂŻve to JMs suggested that the attractiveness of infant images transcends species differences. This is the first report of visual age class recognition and a preference for infant over adult images in nonhuman primates. Our results suggest not only species-specific processing for age class recognition but also the evolutionary origins of the instinctive human perception of baby cuteness schema, proposed by the ethologist Konrad Lorenz
    • 

    corecore