48 research outputs found

    Технологические особенности и систематизация способов термотрансферной печати

    Get PDF
    Проаналізовано технологічні особливості термотрансферного друку, розглянуто застарілі і сучасні способи друку, узагальнено і систематизовано їх різновиди, виділено основні складові технологічних процесів, характеристик матеріалів і устаткування.The technological features of heat transfer printing are analysed, the out-of-date and modern methods of printing are considered, generalized and systematized their variety, the basic components of technological processes, descriptions of materials and equipment are singled out.Проанализированы технологические особенности термотрансферной печати, рассмотрены устаревшие и современные способы печати, обобщены и систематизированы их разновидности, выделены основные составляющие технологических процессов, характеристик материалов и оборудования

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva® 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva® 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation

    On the potential of using Nanocellulose for consolidation of painting canvases

    Get PDF
    Nanocellulose has been recently proposed as a novel consolidant for historical papers. Its use for painting canvas consolidation, however, remains unexplored. Here, we show for the first time how different nanocelluloses, namely mechanically isolated cellulose nanofibrils (CNF), carboxymethylated cellulose nanofibrils (CCNF) and cellulose nanocrystals (CNC), act as a bio-based alternative to synthetic resins and other conventional canvas consolidants. Importantly, we demonstrate that compared to some traditional consolidants, all tested nanocelluloses provided reinforcement in the adequate elongation regime. CCNF showed the best consolidation per added weight; however, it had to be handled at very low solids content compared to other nanocelluloses, exposing canvases to larger water volumes. CNC reinforced the least per added weight but could be used in more concentrated suspensions, giving the strongest consolidation after an equivalent number of coatings. CNF performed between CNC and CCNF. All nanocelluloses showed better consolidation than lining with synthetic adhesive (Beva 371) and linen canvas in the elongation region of interest

    Evaluation of the adhesion and performance of natural consolidants for cotton canvas conservation

    Get PDF
    Recent developments in paper and canvas conservation have seen the introduction of nanocellulose (NC) as a compatible treatment for the consolidation of historical cellulosic artifacts and manuscripts. However, as part of the assessment of these new materials for canvas consolidation, the adhesion of the consolidation treatment (which takes place between the applied material and the substrate) has not yet been evaluated, and as a result, it is poorly understood by both the scientific and conservation communities. After evaluating the potential of NC treatments for the consolidation of cotton painting canvas, we investigate a route to promote the interaction between the existing canvas and the nanocellulose treatment, which is in our case made of cellulose nanofibrils (CNF). This was carried out by introducing a cationic polymer, polyamidoamine−epichlorohydrin (PAAE), as an intermediate layer between the canvas and the CNF. The morphological, chemical, and mechanical evaluation of the canvas samples at different relative humidity (RH) levels demonstrated how the adhesion of the added PAAE layer is a dominant factor in the consolidation process. Improvement in the coating of canvas single fibers by the CNF, higher adhesion energy between the canvas fibers and the CNF treatment, and finally overall stronger canvas reinforcement were observed following the introduction of PAAE. However, an increase in mechanical response to moisture sorption and desorption was also observed for the PAAE-treated canvases. Overall, this study shows the complexity of such systems and, as such, the relevance of using a multiscale approach for their assessment. KEYWORDS: adhesion, nanocellulose, polyamidoamine−epichlorohydrin (PAAE), painting canvas, AFM, DMA−R

    Rheology of cellulose nanofibrils and silver nanowires for the development of screen-printed antibacterial surfaces

    No full text
    TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)-oxidized cellulose nanofibrils (T-CNF) and silver nanowires (Ag NWs) were formulated as active inks. Their rheological properties were investigated to design optimal conditions for processing by the screen-printing process, with the aim of preparing antibacterial patterns. Rheological experiments mimicking the screen-printing process were applied to different ink formulations to investigate their thixotropic and viscosity properties. The experiments conducted at 1wt% total mass content and different ratios of T-CNF/Ag NWs showed that the recovery (%), the recovery time and the viscosity are formulation dependent. A ratio 2:1 (T-CNF/Ag NWs) and total mass content of 2.5wt% were then selected to prepare an ink suitable for screen printing. Printing defects were corrected by addition of water-soluble polymer hydroxypropyl methylcellulose (HPMC). The selected formulation printed on flexible polyethylene terephthalate (PET) substrate displayed a 67.4% antibacterial activity against E. coli in a standard contact active test, with a transparency superior to 70%, proving the promising features of the developed solution for active packaging applications
    corecore