1,219 research outputs found

    Net blotch severity is best assessed at early grain filling with respect to its effect on grain weight of spring barley

    Get PDF
    Appropriate disease assessment methods and parameters reflecting whole-season disease severity levels in field plots remain important issues in studies related to plant disease epidemiology, disease resistance of crop cultivars, and disease-induced yield losses. Such methods and parameters should be yield-related to ensure relevance. Net blotch severity was determined over time in inoculated and non-inoculated field plots of three spring barley varieties by whole plot assessments and by assessments of individual leaves of single main tillers. Disease severity measures such as the area-under-disease-progress-curve, mean and maximum severity as well as severity levels at specific growth stages (GS) were derived from the data. Their relation to thousand grain weight (TGW) and their inter-correlations were examined by means of general linear model (GLM) and factor analyses (FA), respectively. All parameters of net blotch severity were significantly negatively correlated with TGW. Disease parameters derived from whole-plot assessments gave a slightly better explanation of TGW than parameters derived by assessing single main tillers. Net blotch severity at GS 70 (beginning of grain filling) of whole plot assessments yielded the highest adjusted R-squared (0.43) while the adjusted R-squared values resulting from using the same parameter of assessments of the upper three, four or all leaves of single tillers were between 0.34 and 0.35. Also, the residuals of TGW of GLM’s using disease covariates from whole-plot assessments and variety effects as independent variables exhibited less pattern related to other sources of variation than residuals of the corresponding models that used single-tiller-based disease covariates. FA revealed that all disease parameters were highly inter-correlated and co-varied along the 1 principal component axis. The results indicate that disease assessments at GS 70 are appropriate to reflect whole-season severity levels of net blotch. In this respect, the time consuming single-tiller method is in this respect not superior to the simpler whole-plot method. However, assessing individual leaf layers of single tillers allows to observe the epidemic development and thus to examine the dynamics of epidemics in much greater detail than assessing whole-plots. This showed, for example, how much each leaf layer contributed at any given time to the total disease and revealed that a substantial fraction of the total disease is being removed during the course of an epidemic by senescence of diseased lower leaves. This level of detail in examining the dynamics of epidemics cannot be achieved by the whole-plot method

    Scale space consistency of piecewise constant least squares estimators -- another look at the regressogram

    Full text link
    We study the asymptotic behavior of piecewise constant least squares regression estimates, when the number of partitions of the estimate is penalized. We show that the estimator is consistent in the relevant metric if the signal is in L2([0,1])L^2([0,1]), the space of c\`{a}dl\`{a}g functions equipped with the Skorokhod metric or C([0,1])C([0,1]) equipped with the supremum metric. Moreover, we consider the family of estimates under a varying smoothing parameter, also called scale space. We prove convergence of the empirical scale space towards its deterministic target.Comment: Published at http://dx.doi.org/10.1214/074921707000000274 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Transverse fluctuations of grafted polymers

    Full text link
    We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse direction, a Gaussian in the stiff and flexible limits, shows a double peak structure at intermediate stiffnesses. We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    <b>BACKGROUND:</b> The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.<p></p> <b>RESULTS:</b> Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.<p></p> <b>CONCLUSIONS:</b> Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    Perturbation Theory for Path Integrals of Stiff Polymers

    Full text link
    The wormlike chain model of stiff polymers is a nonlinear σ\sigma-model in one spacetime dimension in which the ends are fluctuating freely. This causes important differences with respect to the presently available theory which exists only for periodic and Dirichlet boundary conditions. We modify this theory appropriately and show how to perform a systematic large-stiffness expansions for all physically interesting quantities in powers of L/ξL/\xi, where LL is the length and ξ\xi the persistence length of the polymer. This requires special procedures for regularizing highly divergent Feynman integrals which we have developed in previous work. We show that by adding to the unperturbed action a correction term Acorr{\cal A}^{\rm corr}, we can calculate all Feynman diagrams with Green functions satisfying Neumann boundary conditions. Our expansions yield, order by order, properly normalized end-to-end distribution function in arbitrary dimensions dd, its even and odd moments, and the two-point correlation function

    Influence of bottom topography on integral constraints in zonal flows with parameterized potential vorticity fluxes

    Get PDF
    An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasi-geostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influence the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients which relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography

    Probing Local Wind and Temperature Structure Using Infrasound from Volcan Villarrica (Chile)

    Get PDF
    We use the continuous and intense (∼107 W) infrasound produced by Volcan Villarrica (Chile) to invert for the local dynamic wind and temperature structure of the atmosphere. Infrasound arrays deployed in March 2011 at the summit (2826 m) and on the NNW flank (∼8 km distant at 825 m) were used to track infrasound propagation times and signal power. We model an atmosphere with vertically varying temperature and horizontal winds and use propagation times (ranging from 23 to 24 s) to invert for horizontal slowness (2.75–2.94 s/km) and average effective sound speeds (328–346 m/s) for NNW propagating infrasound. The corresponding ratio of recorded acoustic power at proximal versus distal arrays was also variable (ranging between 0.15 to 1.5 for the peak 0.33–1 Hz infrasound band). Through application of geometrical ray theory in a uniform gradient atmosphere, these \u27amplification factors\u27 are modeled by effective sound speed lapse rates ranging from −15 to +4 m/s per km. NNW-projected wind speeds ranging from −20 m/s to +20 m/s at 2826 m and wind gradients ranging from −11 to +10 m/s per km are inferred from the difference between effective sound speed profiles and adiabatic sound speeds derived from local temperature observations. The sense of these winds is in general agreement with regional meteorological observations recorded with radiosondes. We suggest that infrasound probing can provide useful spatially averaged estimates of atmospheric wind structure that has application for both meteorological observation and volcanological plume dispersal modeling
    corecore