1,111 research outputs found

    Local virial relation and velocity anisotropy for collisionless self-gravitating systems

    Full text link
    The collisionless quasi-equilibrium state realized after the cold collapse of self-gravitating systems has two remarkable characters. One of them is the linear temperature-mass (TM) relation, which yields a characteristic non-Gaussian velocity distribution. Another is the local virial (LV) relation, the virial relation which holds even locally in collisionless systems through phase mixing such as cold-collapse. A family of polytropes are examined from a view point of these two characters. The LV relation imposes a strong constraint on these models: only polytropes with index n5n \sim 5 with a flat boundary condition at the center are compatible with the numerical results, except for the outer region. Using the analytic solutions based on the static and spherical Jeans equation, we show that this incompatibility in the outer region implies the important effect of anisotropy of velocity dispersion. Furthermore, the velocity anisotropy is essential in explaining various numerical results under the condition of the local virial relation.Comment: 8 pages, 5 figures, Proceedings of CN-Kyoto International Workshop on Complexity and Nonextensivity; added a reference for section

    Electronic structure of the strongly hybridized ferromagnet CeFe2

    Full text link
    We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200

    Microphysical Approach to Nonequilibrium Dynamics of Quantum Fields

    Get PDF
    We examine the nonequilibrium dynamics of a self-interacting λϕ4\lambda\phi^4 scalar field theory. Using a real time formulation of finite temperature field theory we derive, up to two loops and O(λ2)O(\lambda^2), the effective equation of motion describing the approach to equilibrium. We present a detailed analysis of the approximations used in order to obtain a Langevin-like equation of motion, in which the noise and dissipation terms associated with quantum fluctuations obey a fluctuation-dissipation relation. We show that, in general, the noise is colored (time-dependent) and multiplicative (couples nonlinearly to the field), even though it is still Gaussian distributed. The noise becomes white in the infinite temperature limit. We also address the effect of couplings to other fields, which we assume play the r\^ole of the thermal bath, in the effective equation of motion for ϕ\phi. In particular, we obtain the fluctuation and noise terms due to a quadratic coupling to another scalar field.Comment: 30 pages, LaTex (uses RevTex 3.0), DART-HEP-93/0

    Absence of isentropic expansion in various inflation models

    Get PDF
    Dynamics of the inflaton is studied when it interacts with boson and fermion fields and in minimal supersymmetric models. This encompasses multifield inflation models, such as hybrid inflation, and typical reheating models. For much of the parameter space conducive to inflation, the inflaton is found to dissipate adequate radiation to have observational effects on density perturbations and in cases to significantly affect inflaton evolution. Thus, for many inflation models, believed to yield exclusively isentropic inflation, the parameter space now divides into regimes of isentropic and nonisentropic inflation.Comment: 6 pages, 1 figure. Version in press Phys. Lett.

    Classical Fields Near Thermal Equilibrium

    Get PDF
    We discuss the classical limit for the long-distance (``soft'') modes of a quantum field when the hard modes of the field are in thermal equilibrium. We address the question of the correct semiclassical dynamics when a momentum cut-off is introduced. Higher order contributions leads to a stochastic interpretation for the effective action in analogy to Quantum Brownian Motion, resulting in dissipation and decoherence for the evolution of the soft modes. Particular emphasis is put on the understanding of dissipation. Our discussion focuses mostly on scalar fields, but we make some remarks on the extension to gauge theories.Comment: REVTeX, 6 figure

    Fermi Surface of 3d^1 Perovskite CaVO3 Near the Mott Transition

    Full text link
    We present a detailed de Haas van Alphen effect study of the perovskite CaVO3, offering an unprecedented test of electronic structure calculations in a 3d transition metal oxide. Our experimental and calculated Fermi surfaces are in good agreement -- but only if we ignore large orthorhombic distortions of the cubic perovskite structure. Subtle discrepancies may shed light on an apparent conflict between the low energy properties of CaVO3, which are those of a simple metal, and high energy probes which reveal strong correlations that place CaVO3 on the verge of a metal-insulator transition.Comment: 4 pages, 4 figures (REVTeX

    Dynamical System Analysis for Inflation with Dissipation

    Get PDF
    We examine the solutions of the equations of motion for an expanding Universe, taking into account the radiation of the inflaton field energy. We then analyze the question of the generality of inflationary solutions in this more general setting of a dissipative system. We find a surprisingly rich behavior for the solutions of the dynamical system of equations in the presence of dissipational effects. We also determine that a value of dissipation as small as 107H\sim 10^{-7} H can lead to a smooth exit from inflation to radiation.Comment: Plain LaTex, 21 pages, 8 eps figs (uses epsf), to be published in Phys. Rev.
    corecore