1,873 research outputs found

    The rp-Process in Neutrino-driven Winds

    Full text link
    Recent hydrodynamic simulations of core-collapse supernovae with accurate neutrino transport suggest that the bulk of the early neutrino-heated ejecta is proton rich, in which the production of some interesting proton-rich nuclei is expected. As suggested in recent nucleosynthesis studies, the rapid proton-capture (rp) process takes place in such proton-rich environments by bypassing the waiting point nuclei with the beta-lives of a few minutes via the faster capture of neutrons continuously supplied from the neutrino absorption by protons. In this study, the nucleosynthesis calculations are performed with the wide ranges of the neutrino luminosities and the electron fractions (Ye), using the semi-analytic models of proto-neutron star winds. The masses of proto-neutron stars are taken to be 1.4 Msolar and 2.0 Msolar, where the latter is regarded as the test for somewhat high entropy winds (about a factor of two). For Ye > 0.52, the neutrino-induced rp-process takes place in many wind trajectories, and the p-nuclei up to A ~ 130 are synthesized with interesting amounts. However, 92Mo is somewhat underproduced compared to those with similar mass numbers. For 0.46 < Ye < 0.49, on the other hand, 92Mo is significantly enhanced by the nuclear flows in the vicinity of the abundant 90Zr that originates from the alpha-process at higher temperature. The nucleosynthetic yields are averaged over the ejected masses of winds, and further the Ye distribution predicted by the recent hydrodynamic simulation of a core-collapse supernova. Comparison of the mass-Ye-averaged yields to the solar compositions implies that the neutrino-driven winds can be potentially the origin of light p-nuclei up to A ~ 110, including 92,94Mo and 96,98Ru that cannot be explained by other astrophysical sites.Comment: 29 pages, 18 figures, accepted for publication in Ap

    Magnetic domain walls in constrained geometries

    Full text link
    Magnetic domain walls have been studied in micrometer-sized Fe20Ni80 elements containing geometrical constrictions by spin-polarized scanning electron microscopy and numerical simulations. By controlling the constriction dimensions, the wall width can be tailored and the wall type modified. In particular, the width of a 180 degree Neel wall can be strongly reduced or increased by the constriction geometry compared with the wall in unconstrained systems.Comment: 4 pages, 6 figure

    Entire solutions of fully nonlinear elliptic equations with a superlinear gradient term

    No full text
    International audienceIn this paper we consider second order fully nonlinear operators with an additive superlinear gradient term. Like in the pioneering paper of Brezis for the semilinear case, we obtain the existence of entire viscosity solutions, defined in all the space, without assuming global bounds. A uniqueness result is also obtained for special gradient terms, subject to a convexity/concavity type assumption where superlinearity is essential and has to be handled in a different way from the linear case

    Unstable Nonradial Oscillations on Helium Burning Neutron Stars

    Full text link
    Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave which resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency of approximately 20-30 Hz (for l=1), and we calculate the full spectrum that a rapidly rotating (>>30 Hz) neutron star would support. The short period X-ray binary 4U 1820--30 is accreting helium rich material and is the system most likely to show this unstable mode,especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 14 figure

    Hydrostatic Expansion and Spin Changes During Type I X-Ray Bursts

    Get PDF
    We present calculations of the spin-down of a neutron star atmosphere due to hydrostatic expansion during a Type I X-ray burst. We show that (i) Cumming and Bildsten overestimated the spin-down of rigidly-rotating atmospheres by a factor of two, and (ii) general relativity has a small (5-10%) effect on the angular momentum conservation law. We rescale our results to different neutron star masses, rotation rates and equations of state, and present some detailed rotational profiles. Comparing with recent observations of large frequency shifts in MXB 1658-298 and 4U 1916-053, we find that the spin-down expected if the atmosphere rotates rigidly is a factor of two to three less than the observed values. If differential rotation is allowed to persist, we find that the upper layers of the atmosphere spin down by an amount comparable to the observed values; however, there is no compelling reason to expect the observed spin frequency to be that of only the outermost layers. We conclude that hydrostatic expansion and angular momentum conservation alone cannot account for the largest frequency shifts observed during Type I bursts.Comment: Submitted to the Astrophysical Journal (13 pages, including 4 figures

    P-Process Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks

    Get PDF
    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 M_solar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It is found that appreciable amounts of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m_dot = M_dot c^2/(16 L_Edd) >10^5, where L_Edd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have similar feature to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of proton through Rayleigh-Taylor instability during the explosion, significant amounts of Mo92 are produced inside the SSADs. Ru96 and La138 are also produced when the fallback gas contains abundant proton though the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to chemical evolution of p-nuclei, in particular Mo92, if several percents of fallback matter are ejected via jets and/or winds.Comment: 15 pages, 7 figures included, 3 tables, LaTeX emulateapj5.sty, accepted for publication by the Astronomical Journal (March, 2003

    The rp Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star

    Get PDF
    We calculate the nucleosynthesis during stable nuclear burning on an accreting neutron star. This is appropriate for weakly magnetic neutron stars accreting at near-Eddington rates in low mass X-ray binaries, and for most accreting X-ray pulsars. We show that the nuclear burning proceeds via the rapid proton capture process (rp process), and makes nuclei far beyond the iron group. The final mixture of nuclei consists of elements with a range of masses between approximately A=60 and A=100. The average nuclear mass of the ashes is set by the extent of helium burning via (alpha,p) reactions, and depends on the local accretion rate. Our results imply that the crust of these accreting neutron stars is made from a complex mixture of heavy nuclei, with important implications for its thermal, electrical and structural properties. A crustal lattice as impure as our results suggest will have a conductivity set mostly by impurity scattering, allowing more rapid Ohmic diffusion of magnetic fields than previously estimated.Comment: To appear in the Astrophysical Journal (33 pages, LaTeX, including 11 postscript figures

    Proton-Deuteron Elastic Scattering from 2.5 to 22.5 MeV

    Get PDF
    We present the results of a calculation of differential cross sections and polarization observables for proton-deuteron elastic scattering, for proton laboratory energies from 2.5 to 22.5 MeV. The Paris potential parametrisation of the nuclear force is used. As solution method for the charged-composite particle equations the 'screening and renormalisation approach' is adopted which allows to correctly take into account the Coulomb repulsion between the two protons. Comparison is made with the precise experimental data of Sagara et al. [Phys. Rev. C 50, 576 (1994)] and of Sperison et al. [Nucl. Phys. A422, 81 (1984)].Comment: 24 pages, 8 eps figures, uses REVTe

    Periodic Thermonuclear X-ray Bursts from GS 1826-24 and the Fuel Composition as a Function of Accretion Rate

    Full text link
    We analyze 24 type I X-ray bursts from GS 1826-24 observed by the Rossi X-ray Timing Explorer between 1997 November and 2002 July. The bursts observed between 1997-98 were consistent with a stable recurrence time of 5.74 +/- 0.13 hr. The persistent intensity of GS 1826-24 increased by 36% between 1997-2000, by which time the burst interval had decreased to 4.10 +/- 0.08 hr. In 2002 July the recurrence time was shorter again, at 3.56 +/- 0.03 hr. The bursts within each epoch had remarkably identical lightcurves over the full approx. 150 s burst duration; both the initial decay timescale from the peak, and the burst fluence, increased slightly with the rise in persistent flux. The decrease in the burst recurrence time was proportional to Mdot^(-1.05+/-0.02) (where Mdot is assumed to be linearly proportional to the X-ray flux), so that the ratio alpha between the integrated persistent and burst fluxes was inversely correlated with Mdot. The average value of alpha was 41.7 +/- 1.6. Both the alpha value, and the long burst durations indicate that the hydrogen is burning during the burst via the rapid-proton (rp) process. The variation in alpha with Mdot implies that hydrogen is burning stably between bursts, requiring solar metallicity (Z ~ 0.02) in the accreted layer. We show that solar metallicity ignition models naturally reproduce the observed burst energies, but do not match the observed variations in recurrence time and burst fluence. Low metallicity models (Z ~ 0.001) reproduce the observed trends in recurrence time and fluence, but are ruled out by the variation in alpha. We discuss possible explanations, including extra heating between bursts, or that the fraction of the neutron star covered by the accreted fuel increases with Mdot.Comment: 9 pages, 6 figures, accepted by ApJ. Minor revisions following the referee's repor
    • 

    corecore