Recent hydrodynamic simulations of core-collapse supernovae with accurate
neutrino transport suggest that the bulk of the early neutrino-heated ejecta is
proton rich, in which the production of some interesting proton-rich nuclei is
expected. As suggested in recent nucleosynthesis studies, the rapid
proton-capture (rp) process takes place in such proton-rich environments by
bypassing the waiting point nuclei with the beta-lives of a few minutes via the
faster capture of neutrons continuously supplied from the neutrino absorption
by protons. In this study, the nucleosynthesis calculations are performed with
the wide ranges of the neutrino luminosities and the electron fractions (Ye),
using the semi-analytic models of proto-neutron star winds. The masses of
proto-neutron stars are taken to be 1.4 Msolar and 2.0 Msolar, where the latter
is regarded as the test for somewhat high entropy winds (about a factor of
two). For Ye > 0.52, the neutrino-induced rp-process takes place in many wind
trajectories, and the p-nuclei up to A ~ 130 are synthesized with interesting
amounts. However, 92Mo is somewhat underproduced compared to those with similar
mass numbers. For 0.46 < Ye < 0.49, on the other hand, 92Mo is significantly
enhanced by the nuclear flows in the vicinity of the abundant 90Zr that
originates from the alpha-process at higher temperature. The nucleosynthetic
yields are averaged over the ejected masses of winds, and further the Ye
distribution predicted by the recent hydrodynamic simulation of a core-collapse
supernova. Comparison of the mass-Ye-averaged yields to the solar compositions
implies that the neutrino-driven winds can be potentially the origin of light
p-nuclei up to A ~ 110, including 92,94Mo and 96,98Ru that cannot be explained
by other astrophysical sites.Comment: 29 pages, 18 figures, accepted for publication in Ap