6,721 research outputs found

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ln3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure

    Evolution and global collapse of trapped Bose condensates under variations of the scattering length

    Full text link
    We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas, without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field interaction between atoms (scattering length) by nearly resonant incident light or by spatially uniform change of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling solutions for the condensate wavefunction evolving under arbitrary variations of the scattering length aa. The change of aa from positive to negative induces a global collapse of the condensate, and the final stages of the collapse will be governed by intrinsic decay processes.Comment: 4 pages, LaTeX, other comments are at http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM

    What makes a crystal supersolid ?

    Get PDF
    For nearly half a century the supersolid phase of matter has remained mysterious, not only eluding experimental observation, but also generating a great deal of controversy among theorists. Recent discovery of what is interpreted as a non-classical moment of inertia at low temperature in solid He-4 has elicited much excitement as a possible first observation of a supersolid phase. In the two years following the discovery, however, more puzzles than answers have been provided to the fundamental issue of whether the supersolid phase exists, in helium or any other naturally occurring condensed matter system. Presently, there is no established theoretical framework to understand the body of experimental data on He-4. Different microscopic mechanisms that have been suggested to underlie superfluidity in a perfect quantum crystal do not seem viable for \he4, for which a wealth of experimental and theoretical evidence points to an insulating crystalline ground state. This perspective addresses some of the outstanding problems with the interpretation of recent experimental observations of the apparent superfluid response in He-4 (seen now by several groups) and discusses various scenarios alternative to the homogeneous supersolid phase, such as superfluidity induced by extended defects of the crystalline structure which include grain boundaries, dislocations, anisotropic stresses, etc. Can a metastable superfluid "glassy" phase exist, and can it be relevant to some of the experimental observations ? One of the most interesting and unsolved fundamental questions is what interatomic potentials, given the freedom to design one, can support an ideal supersolid phase in continuous space, and can they be found in Nature.Comment: Perspective to appear in Advances in Physics, 25 pages, 7 figure

    Cold Collision Frequency Shift in Two-Dimensional Atomic Hydrogen

    Full text link
    We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid 4He at T<=90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta v_c = -1.0(1)x10^-7 Hz cm^-2 x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the 3D case.Comment: 4 pages, 3 figure

    Unconventional superfluidity of fermions in Bose-Fermi mixtures

    Full text link
    We examine two dimensional mixture of single-component fermions and dipolar bosons. We calculate the self-enregies of the fermions in the normal state and the Cooper pair channel by including first order vertex correction to derive a modified Eliashberg equation. We predict appearance of superfluids with various non-standard pairing symmetries at experimentally feasible transition temperatures within the strong-coupling limit of the Eliashberg equation. Excitations in these superfluids are anyonic and follow non-Abelian statistics

    Hydrodynamic flow of expanding Bose-Einstein condensates

    Full text link
    We study expansion of quasi-one-dimensional Bose-Einstein condensate (BEC) after switching off the confining harmonic potential. Exact solution of dynamical equations is obtained in framework of the hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative understanding of some properties of BEC expansion observed in experiments.Comment: 5 pages, 3 figures, RevTeX4. To appear in Physical Review

    b --> s g g decay in the two and three Higgs doublet models with CP violating effects

    Get PDF
    We study the decay width and CP-asymmetry of the inclusive process b--> s g g (g denotes gluon) in the three and two Higgs doublet models with complex Yukawa couplings. We analyse the dependencies of the differential decay width and CP-asymmetry to the s- quark energy E_s and CP violating parameter \theta. We observe that there exist a considerable enhancement in the decay width and CP asymmetry is at the order of 10^{-2}. Further, it is possible to predict the sign of C_7^{eff} using the CP asymmetry.Comment: 15 pages, 7 Figures (required epsf style

    Existence of two-channel Kondo regime for tunneling impurities with resonant scattering

    Full text link
    Dynamical tunneling systems have been proposed earlier to display a two-channel Kondo effect, the orbital index of the particle playing the role of a pseudospin in the equivalent Kondo problem, and the spin being a silent channel index. However, as shown recently by Aleiner et al. [Phys. Rev. Lett. 86, 2629 (2001)], the predicted two-channel Kondo behavior can never be observed in the weak coupling regime, where the tunneling induced splitting of the levels of the tunneling system always dominates the physics. Here we show that the above scenario changes completely if the conduction electrons are scattered by resonant scattering off the tunneling impurity; Then - as a non-perturbative analysis reveals - the two-channel Kondo regime can easily be reached.Comment: 10 PRB page

    CP Violation in SUSY

    Full text link
    Supersymmetry exhibts new sources of CP violation. We discuss the implications of these new contributions to CP violation both in the K and B physics. We show that CP violation puts severe constraints on low energy SUSY, but it represents also a promising ground to look for signals of new physics.Comment: 10 pages, 2 figures. Invited talk by A. Masiero at Ferrara 2000, CP violation physic
    corecore