13 research outputs found

    GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage

    Get PDF
    Altres ajuts: This work was supported by the Ministerio de Ciencia e Innovación (to LB); the Instituto de Salud Carlos III (to LB and to MBP); the Generalitat of Catalunya-Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat (to LB); the Fundacion Investigación Cardiovascular to LB, and the Spanish Society of Cardiology (SEC2015 to MBP).Aims Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. Methods Herein we report that GSK3β regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3β is a canonical Wnt pathway inhibitor. Using GSK3β inhibitors and inducing myocardial injury (MI) in Lrp5 mice model we show that GSK3β phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5 mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3β expression levels. Results These studies support a central role for GSK3β in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3β expression levels do not regulate heart damage

    "Randomización": significado de la aleatoriedad en la investigación clínica

    Get PDF
    Se comenta el significado de la selección o asignación aleatoria, randomización, en la investigación clínica. Se enumeran las bases teóricas, las implicaciones prácticas de la aleatoriedad, y su influencia en el diseño de la investigación. A continuación se comenta el diseño del muestreo propiamente dicho y se describe la realización práctica del muestreo aleatorio simple y equilibrado por bloques. Se discuten las ventajas de muestreo estratificado y en racimos para terminar con unas anotaciones sobre los muestreos no aleatorios y el tratamiento de la información perdida. Se destaca la importancia de la randomización para la realización de una investigación clínica correcta

    Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels

    No full text
    Lipoprotein receptor expression plays a crucial role in the pathophysiology of adipose tissue in in vivo models of diabetes. However, there are no studies in diabetic patients. The aims of this study were to analyze (a) low-density lipoprotein receptor-related protein 1 (LRP1) and very low-density lipoprotein receptor (VLDLR) expression in epicardial and subcutaneous fat from type 2 diabetes mellitus compared with nondiabetic patients and (b) the possible correlation between the expression of these receptors and plasmatic parameters. Adipose tissue biopsy samples were obtained from diabetic (n = 54) and nondiabetic patients (n = 22) undergoing cardiac surgery before the initiation of cardiopulmonary bypass. Adipose LRP1 and VLDLR expression was analyzed at mRNA level by real-time PCR and at protein level by Western blot analysis. Adipose samples were also subjected to lipid extraction, and fat cholesterol ester, triglyceride, and free cholesterol contents were analyzed by thin-layer chromatography. LRP1 expression was higher in epicardial fat from diabetic compared with nondiabetic patients (mRNA 17.63 ± 11.37 versus 7.01 ± 4.86; P = 0.02; protein 11.23 ± 7.23 versus 6.75 ± 5.02, P = 0.04). VLDLR expression was also higher in epicardial fat from diabetic patients but only at mRNA level (231.25 ± 207.57 versus 56.64 ± 45.64, P = 0.02). No differences were found in the expression of LRP1 or VLDLR in the subcutaneous fat from diabetic compared with nondiabetic patients. Epicardial LRP1 and VLDLR mRNA overexpression positively correlated with plasma triglyceride levels (R(2) = 0.50, P = 0.01 and R(2) = 0.44, P = 0.03, respectively) and epicardial LRP1 also correlated with plasma glucose levels (R(2) = 0.33, P = 0.03). These results suggest that epicardial overexpression of certain lipoprotein receptors such as LRP1 and VLDLR expression may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus

    GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage

    No full text
    Altres ajuts: This work was supported by the Ministerio de Ciencia e Innovación (to LB); the Instituto de Salud Carlos III (to LB and to MBP); the Generalitat of Catalunya-Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat (to LB); the Fundacion Investigación Cardiovascular to LB, and the Spanish Society of Cardiology (SEC2015 to MBP).Aims Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. Methods Herein we report that GSK3β regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3β is a canonical Wnt pathway inhibitor. Using GSK3β inhibitors and inducing myocardial injury (MI) in Lrp5 mice model we show that GSK3β phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5 mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3β expression levels. Results These studies support a central role for GSK3β in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3β expression levels do not regulate heart damage

    Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities

    No full text
    Altres ajuts: This work was supported by grants from FEDER "Una Manera de Hacer Europa"; the Secretary of University and Research. We thank FIC-Fundacion Jesús Serra, Barcelona, Spain, for their continuous support.Background: The composition and function of the adipose tissue covering the heart are poorly known. In this study, we have investigated the epicardial adipose tissue (EAT) covering the cardiac ventricular muscle and the EAT covering the left anterior descending artery (LAD) on the human heart, to identify their resident stem cell functional activity. Methods: EAT covering the cardiac ventricular muscle was isolated from the apex (avoiding areas irrigated by major vessels) of the heart (ventricular myocardium adipose tissue (VMAT)) and from the area covering the epicardial arterial sulcus of the LAD (PVAT) in human hearts excised during heart transplant surgery. Adipose stem cells (ASCs) from both adipose tissue depots were immediately isolated and phenotypically characterized by flow cytometry. The different behavior of these ASCs and their released secretome microvesicles (MVs) were investigated by molecular and cellular analysis. Results: ASCs from both VMAT (mASCs) and the PVAT (pASCs) were characterized by the expression of CD105, CD44, CD29, CD90, and CD73. The angiogenic-related genes VEGFA, COL18A1, and TF, as well as the miRNA126-3p and miRNA145-5p, were analyzed in both ASC types. Both ASCs were functionally able to form tube-like structures in three-dimensional basement membrane substrates. Interestingly, pASCs showed a higher level of expression of VEGFA and reduced level of COL18A1 than mASCs. Furthermore, MVs released by mASCs significantly induced human microvascular endothelial cell migration. Conclusion: Our study indicates for the first time that the resident ASCs in human epicardial adipose tissue display a depot-specific angiogenic function. Additionally, we have demonstrated that resident stem cells are able to regulate microvascular endothelial cell function by the release of MVs

    Endogenous expression of c-reactive protein is increased in active (ulcerated noncomplicated) human carotid artery plaques

    No full text
    Background and Purpose— There is growing evidence suggesting that C-reactive protein (CRP) is an effecter molecule able to induce and promote atherothrombosis. The presence of CRP in atherosclerotic plaques may reflect local production or infiltration from circulating CRP increased in general inflammatory responses. Our aim was to analyze the presence of CRP in human advanced carotid artery plaques with differential anatomo-pathological characteristics and to assess local expression of CRP and other proinflammatory genes in these lesions. Methods— Human carotid artery specimens from 38 patients undergoing scheduled endarterectomy were classified into 3 groups: ulcerated (noncomplicated) (UNC, n=19), fibrous (F, n=12) and ulcerated (complicated/hemorrhagic) plaques (UC, n=7). The presence of CRP was evaluated by immunohistochemistry, and plasma samples were screened for circulating high-sensitivity C-reactive protein. TaqMan Low-density Arrays were used for study of genes related to inflammation (CRP, interleukin-6, macrophage colony-stimulating factor-1, monocyte chemotactic protein-1, cyclooxygenase-2). Results— CRP mRNA levels were predominantly detected in UNC-high risk plaques but not in UC (P=0.001). UNC also exhibit the highest expression levels of other genes involved in the inflammatory responses: cyclooxygenase-2 (P<0.005 versus F and versus UC), IL-6 (P<0.005 versus F and versus UC) and monocyte chemoattractant protein-1 (P<0.01 versus F and versus UC). Plaque CRP mRNA levels correlated with immunohistochemical findings but were independent of plasma high-sensitivity CRP. In UNC plaques endothelial cells and inflammatory cells were strongly positive for CRP around areas of newly formed microvessels. Conclusions— In human high-risk carotid artery plaques (UNC) CRP expression reflects an active proinflammatory stage. Local synthesis of CRP could be involved in plaque neovascularization and increased risk of hemorrhagic transformation
    corecore