462 research outputs found

    CTMC calculations of electron capture and ionization in collisions of multiply charged ions with elliptical Rydberg atoms

    Get PDF
    We have performed classical trajectory Monte Carlo (CTMC) studies of electron capture and ionization in multiply charged (Q=8) ion-Rydberg atom collisions at intermediate impact velocities. Impact parallel to the minor and to the major axis, respectively, of the initial Kepler electron ellipse has been investigated. The important role of the initial electron momentum distribution found for singly charged ion impact is strongly disminished for higher projectile charge, while the initial spatial distribution remains important for all values of Q studied.Comment: 3 pages, 5 figure

    Continued Neutron Star Crust Cooling of the 11 Hz X-Ray Pulsar in Terzan 5: A Challenge to Heating and Cooling Models?

    Get PDF
    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11-week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ~2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.Comment: Accepted to ApJ without revision. Updated references and fixed few typos to match published version. 7 pages, 3 figures, 3 table

    Extreme Quiescent Variability of the Transient Neutron Star Low-mass X-ray Binary EXO 1745-248 in Terzan 5

    Full text link
    EXO 1745-248 is a transient neutron-star low-mass X-ray binary that resides in the globular cluster Terzan 5. We studied the transient during its quiescent state using 18 Chandra observations of the cluster acquired between 2003 and 2016. We found an extremely variable source, with a luminosity variation in the 0.5-10 keV energy range of ∌3\sim3 orders of magnitude (between 3×10313\times10^{31} erg s−1^{-1} and 2×10342\times10^{34} erg s−1^{-1}) on timescales from years down to only a few days. Using an absorbed power-law model to fit its quiescent spectra, we obtained a typical photon index of ∌1.4\sim1.4, indicating that the source is even harder than during outburst and much harder than typical quiescent neutron stars if their quiescent X-ray spectra are also described by a single power-law model. This indicates that EXO 1745-248 is very hard throughout the entire observed X-ray luminosity range. At the highest luminosity, the spectrum fits better when an additional (soft) component is added to the model. All these quiescent properties are likely related to strong variability in the low-level accretion rate in the system. However, its extreme variable behavior is strikingly different from the one observed for other neutron star transients that are thought to still accrete in quiescence. We compare our results to these systems. We also discuss similarities and differences between our target and the transitional millisecond pulsar IGR J18245-2452, which also has hard spectra and strong variability during quiescence.Comment: Accepted for publication in MNRA

    Determining the effects of clumping and porosity on the chemistry in a non-uniform AGB outflow

    Get PDF
    (abridged) In the inner regions of AGB outflows, several molecules have been detected with abundances much higher than those predicted from thermodynamic equilibrium (TE) chemical models. The presence of the majority of these species can be explained by shock-induced non-TE chemical models, where shocks caused by the pulsating star take the chemistry out of TE in the inner region. Moreover, a non-uniform density structure has been detected in several AGB outflows. A detailed parameter study on the quantitative effects of a non-homogeneous outflow has so far not been performed. We implement a porosity formalism for treating the increased leakage of light associated with radiation transport through a clumpy, porous medium. The effects from the altered UV radiation field penetration on the chemistry, accounting also for the increased reaction rates of two-body processes in the overdense clumps, are examined. We present a parameter study of the effect of clumping and porosity on the chemistry throughout the outflow. Both the higher density within the clumps and the increased UV radiation field penetration have an important impact on the chemistry, as they both alter the chemical pathways. The increased amount of UV radiation in the inner region leads to photodissociation of parent species, releasing the otherwise deficient elements. We find an increased abundance in the inner region of all species not expected to be present assuming TE chemistry, such as HCN in O-rich outflows, H2_2O in C-rich outflows, and NH3_3 in both. Outflows whose clumps have a large overdensity and that are very porous to the interstellar UV radiation field yield abundances comparable to those observed in O- and C-rich outflows for most of the unexpected species investigated. The inner wind abundances of H2_2O in C-rich outflows and of NH3_3 in O- and C-rich outflows are however underpredicted.Comment: 33 pages, 20 figures, 15 tables, accepted for publication in Astronomy & Astrophysic

    The 2005 outburst of GRO J1655-40: spectral evolution of the rise, as observed by Swift

    Full text link
    We present Swift observations of the black hole X-ray transient, GRO J1655-40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well-suited for monitoring the spectral evolution of such an event. GRO J1655-40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the ``canonical'' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3-10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∌3\sim 3 weeks in the very high state. The hard X-rays (14-150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet lightcurve behaved very differently from that of the X-rays; this might suggest that the soft X-ray lightcurve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).Comment: Accepted for publication in MNRA

    Mode Spectroscopy and Level Coupling in Ballistic Electron Waveguides

    Full text link
    A tunable quantum point contact with modes occupied in both transverse directions is studied by magnetotransport experiments. We use conductance quantization of the one-dimensional subbands as a tool to determine the mode spectrum. A magnetic field applied along the direction of the current flow couples the modes. This can be described by an extension of the Darwin-Fock model. Anticrossings are observed as a function of the magnetic field, but not for zero field or perpendicular field directions, indicating coupling of the subbands due to nonparabolicity in the electrical confinement.Comment: 4 pages, 3 figure

    Variability of X-ray binaries from an oscillating hot corona

    Full text link
    The spectral and timing properties of an oscillating hot thermal corona are investigated. This oscillation is assumed to be due to a magneto-acoustic wave propagating within the corona and triggered by an external, non specified, excitation. A cylindrical geometry is adopted and, neglecting the rotation, the wave equation is solved in for different boundary conditions. The resulting X-ray luminosity, through thermal comptonization of embedded soft photons, is then computed, first analytically, assuming linear dependence between the local pressure disturbance and the radiative modulation. These calculations are also compared to Monte-Carlo simulations. The main results of this study are: (1) the corona plays the role of a low band-pass medium, its response to a white noise excitation being a at top noise Power Spectral Density (PSD) at low frequencies and a red noise at high frequency, (2) resonant peaks are present in the PSD. Their powers depend on the boundary conditions chosen and, more specifically, on the impedance adaptation with the external medium at the corona inner boundary. (3) The flat top noise level and break as well as the resonant peak frequencies are inversely proportional to the external radius rj. (4) Computed rms and f-spectra exhibit an overall increase of the variability with energy. Comparison with observed variability features, especially in the hard intermediate states of X-ray binaries are discussed.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Variability as a Predictor for the Hard-to-soft State Transition in GX 339−4

    Get PDF
    During the outbursts of black hole X-ray binaries (BHXRBs), their accretion flows transition through several states. The source luminosity rises in the hard state, dominated by nonthermal emission, before transitioning to the blackbody-dominated soft state. As the luminosity decreases, the source transitions back into the hard state and fades to quiescence. This picture does not always hold, as ≈40% of the outbursts never leave the hard state. Identifying the physics that govern state transitions remains one of the outstanding open questions in black hole astrophysics. In this paper we present an analysis of archival RXTE data of multiple outbursts of GX 339−4. We compare the properties of the X-ray variability and time-averaged energy spectrum and demonstrate that the variability (quantified by the power spectral hue) systematically evolves ≈10–40 days ahead of the canonical state transition (quantified by a change in spectral hardness); no such evolution is found in hard-state-only outbursts. This indicates that the X-ray variability can be used to predict if and when the hard-to-soft state transition will occur. Finally, we find a similar behavior in 10 outbursts of four additional BHXRBs with more sparse observational coverage. Based on these findings, we suggest that state transitions in BHXRBs might be driven by a change in the turbulence in the outer regions of the disk, leading to a dramatic change in variability. This change is only seen in the spectrum days to weeks later, as the fluctuations propagate inwards toward the corona

    Continued cooling of the accretion-heated neutron star crust in the X-ray transient IGR J17480-2446 located in the globular cluster Terzan 5

    Get PDF
    We present a new Chandra observation (performed in July 2016) of the neutron star X-ray transient IGR J17480-2446, located in the globular cluster Terzan 5. We study the continued cooling of the neutron star crust in this system that was heated during the 2010 outburst of the source. This new observation was performed two years after the last observation of IGR J17480-2446, hence, significantly extending the cooling baseline. We reanalysed all available Chandra observations of the source (but excluding observations during which one of the known transients in Terzan 5 was in outburst) and fitted the obtained cooling curve with our cooling code NSCool, which allows for much improved modelling than what was previously performed for the source. The data and our fit models indicate that the crust was still cooling ~5.5 years after the outburst ended. The neutron star crust has likely not reached crust-core thermal equilibrium yet, and further cooling is predicted (which can be confirmed with additional Chandra observations in >5 years). Intriguingly, we find indications that the thermal conductivity might be relatively low in part of the crust compared to what has been inferred for other crust-cooling sources and tentatively suggest that this layer might be located around the neutron drip. The reason for this difference is unclear, but might be related to the fact that IGR J17480-2446 harbours a relatively slowly rotating neutron star (with a spin of 11 Hz) that has a relatively strong inferred surface magnetic field (109−1010^{9-10} Gauss) compared to what is known or typically assumed for other cooling sources.Comment: 17 pages, 10 figures, 4 tables, accepted for publication in MNRA
    • 

    corecore