11 research outputs found

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    RELAPSE PREVENTION AND IMPROVEMENT OF RESULTS OF COMPLEX ARRHYTHMIAS’ SURGICAL CORRECTION IN CARDIAC PATIENTS

    No full text
    Aim: To examine results of surgical intervention in cardiac surgery patients with atrial fibrillation after a loading pre-operative dose of amiodarone.Material and methods: The study included 49 cardiac patients with atrial fibrillation who underwent a surgery during a 14 months’ period in 2013–2014. Group 1 (n = 23) received preoperative amiodarone saturation at a dose 0.6–1.0 g daily with a maintenance dose 0.4 g daily in early postoperative period and at a dose 0.2 g daily up to 6 months after surgery. Group 2 (control, n = 26) was on a postoperative maintenance dose of amiodarone 0.6–1.0 g daily.Results: Stable sinus rhythm after left atrial Maze IV procedure was established in 44/49 of patients (90%). Atrial fibrillation relapsed in 1 patient from group 1 and in 4 patients from group 2. All 5 patients with recurrence of persistent atrial fibrillation had a long-term persistent arrhythmic history of more than 3 years, and echocardiography revealed left atrial dilatation of more than 6 cm.Conclusion: The use of saturating doses of amiodarone before surgery improves outcomes of left atrial Maze IV procedure (up to 95%), compared to those in the control group where amiodarone was used postoperatively (up to 85%)

    SURGICAL TREATMENT OF COMPLEX ARRHYTHMIAS IN PATIENTS WITH NON-ISCHEMIC MITRAL INSUFFICIENCY

    No full text
    Aim: To analyze and improve efficacy of surgical treatment of patients with non-ischemic mitral insufficiency and atrial fibrillation.Materials and methods: The study included 64 patients with degenerative mitral insufficiency complicated by atrial fibrillation who had surgical interventions from 2011 to 2014. Surgical treatment consisted of surgical correction of mitral regurgitation: mitral valve reconstruction (group 1, n = 133) and mechanical prosthesis (group 2, n = 31), as well as left atrium Maze IV procedure in “box lesion” modification with the use of AtriCure bipolar destructor in both groups.Results: No postoperative deaths were registered. After surgery, all patients showed a decrease in all cardiac cavities’ sizes and of pulmonary hypertension, an improvement in left ventricular systolic function assessed by transthoracic echocardiography. During follow-up of up to 14 months’ duration, sinus rhythm was maintained in 56 (86%) of patients, whereas 9 patients had recurrent atrial fibrillation resistant to medications and electrical cardioversion. Patients, who had undergone valve preserving correction of mitral insufficiency and left atrium Maze IV procedure, had the best results as to contractility of left ventricle (7.86%), reduction of cardiac cavities’ size (end-diastolic dimension – 11.05%, end-systolic dimension – 15.15%, right atrium – 15.19%), especially that of left atrium (19.03%), reduction of pulmonary hypertension (27.75%) and significant improvement in quality of life (7 points) assessed by Minnesota Living with Heart Failure Questionnaire.Conclusion: Plastic correction of mitral insufficiency with atrial fibrillation combined with Maze IV procedure gives the highest improvement of left ventricular contractility and diminishing of cavities compared to mitral valve replacement with mechanical prosthesis in combination with Maze IV procedure

    A Placebo-Controlled Trial of Oral Cladribine for Relapsing Multiple Sclerosis

    No full text

    Rotigotine transdermal system for long-term treatment of patients with advanced Parkinson's disease: results of two open-label extension studies, CLEOPATRA-PD and PREFER

    No full text
    Open-label extensions [studies SP516 (NCT00501969) and SP715 (NCT00594386)] of the CLEOPATRA-PD and PREFER studies were conducted to evaluate the safety, tolerability and efficacy of the dopaminergic agonist, rotigotine, over several years of follow-up in patients with advanced Parkinson's disease (PD). Eligible subjects completing the double-blind trials received open-label adjunctive rotigotine (≤16 mg/24 h) for up to 4 and 6 years in Studies SP516 and SP715, respectively. Safety and tolerability were assessed using adverse events, vital signs and laboratory parameters, and efficacy assessed using the unified Parkinson's disease rating scale (UPDRS). Of the 395 and 258 patients enrolled in the SP516 and SP715 studies, 48 and 45 % completed, respectively. Adverse events were typically dopaminergic effects [e.g., somnolence (18-25 %/patient-year), insomnia (5-7 %/patient-year), dyskinesias (4-8 %/patient-year) and hallucinations (4-8 %/patient-year)], or related to the transdermal application of a patch (application site reactions: 14-15 %/patient-year). There were no clinically relevant changes in vital signs or laboratory parameters in either study. Mean UPDRS part II (activities of daily living) and part III (motor function) total scores improved from double-blind baseline during dose titration, then gradually declined over the maintenance period. In study SP516, mean UPDRS part II and III total scores were 0.8 points above and 2.8 points below double-blind baseline, respectively, at end of treatment. In study SP715, mean UPDRS part II and III total scores were 4.1 points above and 0.2 points below baseline, respectively, at end of treatment. In these open-label studies, adjunctive rotigotine was efficacious with an acceptable safety and tolerability profile in patients with advanced PD for up to 6 years

    Acute cerebrovascular disease in the young

    No full text

    Rationale and design of a randomized, double-blind, parallel-group study of terutroban 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study.

    No full text
    BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event.Journal ArticleMulticenter StudyRandomized Controlled TrialResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial

    No full text
    Background: Patients with ischaemic stroke or transient ischaemic attack (TIA) are at high risk of recurrent stroke or other cardiovascular events. We compared the selective thromboxane-prostaglandin receptor antagonist terutroban with aspirin in the prevention of cerebral and cardiovascular ischaemic events in patients with a recent non-cardioembolic cerebral ischaemic event. &lt;p/&gt;Methods: This randomised, double-blind, parallel-group trial was undertaken in 802 centres in 46 countries. Patients who had an ischaemic stroke in the previous 3 months or a TIA in the previous 8 days were randomly allocated with a central interactive response system to 30 mg per day terutroban or 100 mg per day aspirin. Patients and investigators were masked to treatment allocation. The primary efficacy endpoint was a composite of fatal or non-fatal ischaemic stroke, fatal or non-fatal myocardial infarction, or other vascular death (excluding haemorrhagic death). We planned a sequential statistical analysis of non-inferiority (margin 1·05) followed by analysis of superiority. Analysis was by intention to treat. The study was stopped prematurely for futility on the basis of the recommendation of the Data Monitoring Committee. This study is registered, number ISRCTN66157730. &lt;p/&gt;Findings: 9562 patients were assigned to terutroban (9556 analysed) and 9558 to aspirin (9544 analysed); mean follow-up was 28·3 months (SD 7·7). The primary endpoint occurred in 1091 (11%) patients receiving terutroban and 1062 (11%) receiving aspirin (hazard ratio [HR] 1·02, 95% CI 0·94–1·12). There was no evidence of a difference between terutroban and aspirin for the secondary or tertiary endpoints. We recorded some increase in minor bleedings with terutroban compared with aspirin (1147 [12%] vs 1045 [11%]; HR 1·11, 95% CI 1·02–1·21), but no significant differences in other safety endpoints. &lt;p/&gt;Interpretation: The trial did not meet the predefined criteria for non-inferiority, but showed similar rates of the primary endpoint with terutroban and aspirin, without safety advantages for terutroban. In a worldwide perspective, aspirin remains the gold standard antiplatelet drug for secondary stroke prevention in view of its efficacy, tolerance, and cost

    Rationale and design of a randomized, double-blind, parallel-group study of terutroban 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study.

    No full text
    BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event
    corecore