90 research outputs found
Bounding the norm of a log-concave vector via thin-shell estimates
Chaining techniques show that if X is an isotropic log-concave random vector
in R^n and Gamma is a standard Gaussian vector then E |X| < C n^{1/4} E |Gamma|
for any norm |*|, where C is a universal constant. Using a completely different
argument we establish a similar inequality relying on the thin-shell constant
sigma_n = sup ((var|X|^){1/2} ; X isotropic and log-concave on R^n).
In particular, we show that if the thin-shell conjecture sigma_n = O(1)
holds, then n^{1/4} can be replaced by log (n) in the inequality.
As a consequence, we obtain certain bounds for the mean-width, the dual
mean-width and the isotropic constant of an isotropic convex body.
In particular, we give an alternative proof of the fact that a positive
answer to the thin-shell conjecture implies a positive answer to the slicing
problem, up to a logarithmic factor.Comment: preliminary version, 13 page
Local Algorithms for Block Models with Side Information
There has been a recent interest in understanding the power of local
algorithms for optimization and inference problems on sparse graphs. Gamarnik
and Sudan (2014) showed that local algorithms are weaker than global algorithms
for finding large independent sets in sparse random regular graphs. Montanari
(2015) showed that local algorithms are suboptimal for finding a community with
high connectivity in the sparse Erd\H{o}s-R\'enyi random graphs. For the
symmetric planted partition problem (also named community detection for the
block models) on sparse graphs, a simple observation is that local algorithms
cannot have non-trivial performance.
In this work we consider the effect of side information on local algorithms
for community detection under the binary symmetric stochastic block model. In
the block model with side information each of the vertices is labeled
or independently and uniformly at random; each pair of vertices is
connected independently with probability if both of them have the same
label or otherwise. The goal is to estimate the underlying vertex
labeling given 1) the graph structure and 2) side information in the form of a
vertex labeling positively correlated with the true one. Assuming that the
ratio between in and out degree is and the average degree , we characterize three different regimes under which a
local algorithm, namely, belief propagation run on the local neighborhoods,
maximizes the expected fraction of vertices labeled correctly. Thus, in
contrast to the case of symmetric block models without side information, we
show that local algorithms can achieve optimal performance for the block model
with side information.Comment: Due to the limitation "The abstract field cannot be longer than 1,920
characters", the abstract here is shorter than that in the PDF fil
On almost randomizing channels with a short Kraus decomposition
For large d, we study quantum channels on C^d obtained by selecting randomly
N independent Kraus operators according to a probability measure mu on the
unitary group U(d). When mu is the Haar measure, we show that for
N>d/epsilon^2. For d=2^k (k qubits), this includes Kraus operators
obtained by tensoring k random Pauli matrices. The proof uses recent results on
empirical processes in Banach spaces.Comment: We added some background on geometry of Banach space
Localizing the Latent Structure Canonical Uncertainty: Entropy Profiles for Hidden Markov Models
This report addresses state inference for hidden Markov models. These models
rely on unobserved states, which often have a meaningful interpretation. This
makes it necessary to develop diagnostic tools for quantification of state
uncertainty. The entropy of the state sequence that explains an observed
sequence for a given hidden Markov chain model can be considered as the
canonical measure of state sequence uncertainty. This canonical measure of
state sequence uncertainty is not reflected by the classic multivariate state
profiles computed by the smoothing algorithm, which summarizes the possible
state sequences. Here, we introduce a new type of profiles which have the
following properties: (i) these profiles of conditional entropies are a
decomposition of the canonical measure of state sequence uncertainty along the
sequence and makes it possible to localize this uncertainty, (ii) these
profiles are univariate and thus remain easily interpretable on tree
structures. We show how to extend the smoothing algorithms for hidden Markov
chain and tree models to compute these entropy profiles efficiently.Comment: Submitted to Journal of Machine Learning Research; No RR-7896 (2012
Optimal Concentration of Information Content For Log-Concave Densities
An elementary proof is provided of sharp bounds for the varentropy of random
vectors with log-concave densities, as well as for deviations of the
information content from its mean. These bounds significantly improve on the
bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543,
2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with
more general sufficient conditions for equality in Theorem 2.3. Also some
minor corrections and added reference
Remarks on the KLS conjecture and Hardy-type inequalities
We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary
functions on a convex body , not necessarily
vanishing on the boundary . This reduces the study of the
Neumann Poincar\'e constant on to that of the cone and Lebesgue
measures on ; these may be bounded via the curvature of
. A second reduction is obtained to the class of harmonic
functions on . We also study the relation between the Poincar\'e
constant of a log-concave measure and its associated K. Ball body
. In particular, we obtain a simple proof of a conjecture of
Kannan--Lov\'asz--Simonovits for unit-balls of , originally due to
Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in
final form in GAFA seminar note
Estimation in high dimensions: a geometric perspective
This tutorial provides an exposition of a flexible geometric framework for
high dimensional estimation problems with constraints. The tutorial develops
geometric intuition about high dimensional sets, justifies it with some results
of asymptotic convex geometry, and demonstrates connections between geometric
results and estimation problems. The theory is illustrated with applications to
sparse recovery, matrix completion, quantization, linear and logistic
regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change
- âŠ