1,028 research outputs found

    The stellar populations of the central region of M31

    Full text link
    We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80\% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.Comment: Language-edited version, Accepted for publication in A&

    XXZ Bethe states as highest weight vectors of the sl2sl_2 loop algebra at roots of unity

    Full text link
    We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at roots of unity is a highest weight vector of the sl2sl_2 loop algebra, for some restricted sectors with respect to eigenvalues of the total spin operator SZS^Z, and evaluate explicitly the highest weight in terms of the Bethe roots. We also discuss whether a given regular Bethe state in the sectors generates an irreducible representation or not. In fact, we present such a regular Bethe state in the inhomogeneous case that generates a reducible Weyl module. Here, we call a solution of the Bethe ansatz equations which is given by a set of distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio

    The old and heavy bulge of M31 I. Kinematics and stellar populations

    Full text link
    We present new optical long-slit data along 6 position angles of the bulge region of M31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk makes 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km/s) and previous dynamical models have underestimated the stellar mass of M31's bulge by a factor 2. Moreover, the light-weighted velocity dispersion of the galaxy grows to 166 km/s, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M31. The kinematic position angle varies with distance, pointing to triaxiality. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. We derive the age, metallicity and alpha-element overabundance profiles. Except for the region in the inner arcsecs of the galaxy, the bulge of M31 is uniformly old (>12 Gyr, with many best-fit ages at the model grid limit of 15 Gyr), slightly alpha-elements overabundant ([alpha/Fe]~0.2) and at solar metallicity, in agreement with studies of the resolved stellar components. The predicted u-g, g-r and r-i Sloan color profiles match reasonably well the dust-corrected observations. The stellar populations have approximately radially constant mass-to-light ratios (M/L_R ~ 4-4.5 for a Kroupa IMF), in agreement with stellar dynamical estimates based on our new velocity dispersions. In the inner arcsecs the luminosity-weighted age drops to 4-8 Gyr, while the metallicity increases to above 3 times the solar value.Comment: Accepted for publication in A&

    Chapter 17: Vulnerability of coral reefs of the Great Barrier Reef to climate change

    Get PDF
    The Great Barrier Reef (GBR) contains the most extensive coral reef ecosystem on earth. It consists of 2900 coral reefs and 900 coral cays that cover approximately 20,000 km2 of the total 345,000 km2 area of the GBR Marine Park. As a consequence of unusually high summer sea surface temperatures, between 42 to 60 percent of the reefs of the GBR experienced mass coral bleaching in 19988. Bleaching was also reported from 31 other nations around the world during 1997–1998. For example, about 50 percent of reefs in the Indian Ocean and south Asia lost much of their coral cover, and an estimated 16 percent of the world’s area of coral reefs was severely damaged. The event coincided with the strongest recorded El Niño-Southern Oscillation event (ENSO) and one of the warmest years on record.This is Chapter 17 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    Scalar-gauge dynamics in (2+1) dimensions at small and large scalar couplings

    Get PDF
    We present the results of a detailed calculation of the excitation spectrum of states with quantum numbers J^{PC}=0++, 1-- and 2++ in the three-dimensional SU(2) Higgs model at two values of the scalar self-coupling and for fixed gauge coupling. In the context of studies of the electroweak phase transition at finite temperature these couplings correpond to tree-level, zero temperature Higgs masses of 35 GeV and 120 GeV, respectively. We also study the properties of Polyakov loop operators, which serve to test the confining properties of the model in the symmetric phase. At both values of the scalar coupling we obtain masses of bound states consisting entirely of gauge degrees of freedom ("W-balls"), which are very close to those obtained in the pure gauge theory. We conclude that the previously observed, approximate decoupling of the scalar and gauge sectors of the theory persists at large scalar couplings. We study the crossover region at large scalar coupling and present a scenario how the confining properties of the model in the symmetric phase are lost inside the crossover by means of flux tube decay. We conclude that the underlying dynamics responsible for the observed dense spectrum of states in the Higgs region at large couplings must be different from that in the symmetric phase.Comment: 36 pages, LaTeX, 13 postscript files, to be included with epsf; improved presentation, updated references, conclusions unchanged; version to appear in Nucl. Phys.

    The spectrum of the three-dimensional adjoint Higgs model and hot SU(2) gauge theory

    Get PDF
    We compute the mass spectrum of the SU(2) adjoint Higgs model in 2+1 dimensions at several points located in the (metastable) confinement region of its phase diagram. We find a dense spectrum consisting of an almost unaltered repetition of the glueball spectrum of the pure gauge theory, and additional bound states of adjoint scalars. For the parameters chosen, the model represents the effective finite temperature theory for pure SU(2) gauge theory in four dimensions, obtained after perturbative dimensional reduction. Comparing with the spectrum of screening masses obtained in recent simulations of four-dimensional pure gauge theory at finite temperature, for the low lying states we find quantitative agreement between the full and the effective theory for temperatures as low as T = 2 Tc. This establishes the model under study as the correct effective theory, and dimensional reduction as a viable tool for the description of thermodynamic properties. We furthermore compare the perturbative contribution O(g.T) with the non-perturbative contributions O(g^2.T) and O(g^3.T) to the Debye mass. The latter turns out to be dominated by the scale g^2.T, whereas higher order contributions are small corrections.Comment: LaTeX. Typos corrected and references adde

    Irreducibility criterion for a finite-dimensional highest weight representation of the sl(2) loop algebra and the dimensions of reducible representations

    Full text link
    We present a necessary and sufficient condition for a finite-dimensional highest weight representation of the sl2sl_2 loop algebra to be irreducible. In particular, for a highest weight representation with degenerate parameters of the highest weight, we can explicitly determine whether it is irreducible or not. We also present an algorithm for constructing finite-dimensional highest weight representations with a given highest weight. We give a conjecture that all the highest weight representations with the same highest weight can be constructed by the algorithm. For some examples we show the conjecture explicitly. The result should be useful in analyzing the spectra of integrable lattice models related to roots of unity representations of quantum groups, in particular, the spectral degeneracy of the XXZ spin chain at roots of unity associated with the sl2sl_2 loop algebra.Comment: 32 pages with no figure; with corrections on the published versio

    17O NMR study of q=0 spin excitations in a nearly ideal S=1/2 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K

    Full text link
    We used 17O NMR to probe the uniform (wavevector q=0) electron spin excitations up to 800 K in Sr2CuO3 and separate the q=0 from the q=\pm\pi/a staggered components. Our results support the logarithmic decrease of the uniform spin susceptibility below T ~ 0.015J, where J=2200 K. From measurement of the dynamical spin susceptibility for q=0 by the spin-lattice relaxation rate 1/T_{1}, we demonstrate that the q=0 mode of spin transport is ballistic at the T=0 limit, but has a diffusion-like contribution at finite temperatures even for T << J.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figure
    corecore