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17.1 Introduction
The Great Barrier Reef (GBR) contains the most extensive coral reef ecosystem on earth. It consists of 

2900 coral reefs and 900 coral cays that cover approximately 20,000 km2 of the total 345,000 km2 

area of the GBR Marine Park. As a consequence of unusually high summer sea surface temperatures, 

between 42 to 60 percent of the reefs of the GBR experienced mass coral bleaching in 19988. 

Bleaching was also reported from 31 other nations around the world during 1997–1998. For example, 

about 50 percent of reefs in the Indian Ocean and south Asia lost much of their coral cover, and an 

estimated 16 percent of the world’s area of coral reefs was severely damaged43. The event coincided 

with the strongest recorded El Niño-Southern Oscillation event (ENSO) and one of the warmest years 

on record78,106. In early 2002, another mass bleaching event occurred on the GBR, exceeding the 1998 

event in scale and severity8. Again, it was linked to record summer sea surface temperatures, despite 

weak ENSO activity8. These bleaching events alerted the world to the vulnerability of coral reefs to 

climate change. The responses of reef-building scleractinian corals are now much better understood 

than those of other groups of reef associated organisms12,54,25 (Hoegh-Guldberg et al. chapter 10). 

This chapter reviews what is known of the vulnerability of GBR coral reefs to climate change at the 

ecosystem level. We consider how the ecosystem is affected by: i) increasing sea temperature, ii) 

irradiance, iii) ocean acidification, iv) frequency of intense tropical storms and v) altered rainfall and 

river flood plumes. The chapter focuses on the ramifications of increased coral mortality on ecosystem 

functions, including rates of calcification and erosion, reduced structural complexity and thus 

provision of habitat and shelter for reef-associated species. The chapter also considers the implications 

of significant loss of coral cover resulting in shifts in trophic structure and competitive advantages for 

some species within the ecosystem. 

Assessing the vulnerability of GBR coral reefs at an ecosystem level is complicated due to the natural 

complexity of the system. The GBR ecosystem has a range and diversity of habitat types represented 

by over 70 distinct reef and non-reef bioregions identified based on their contrasting geophysical 

and biological characteristics35. These bioregions represent a gradient from tropical to subtropical 

reefs (between 12 to 24 °S), and across the continental shelf from turbid and shallow coastal reefs to 

reefs in deep blue-water oceanic environments. Additionally, extensive submerged coral reefs, coral 

communities and coral-associated organisms occupy parts of the deep seafloor. The GBR has high 

biodiversity and complex interactions, which all contribute to a greater or lesser extent to shaping 

the ecosystem. The coral reefs of the GBR are formed by the calcium carbonate skeletons of over 400 

species of hard corals, the carbonate deposits of a number of calcifying algae, foraminifera, molluscs, 

tube-forming annelid worms and octocorals, as well as abiotic carbonate precipitation. These 

complex carbonate structures form the habitat for many tens of thousands of species of protozoans, 

fungi, marine plants and animals. For example, more than 1000 species of marine plants, 1500 

species of sponges, 4000 species of molluscs, 800 species of echinoderms and over 1500 species of 

fish have been recorded on the GBR to date, with new species being added every year. This high 

habitat and species diversity contributed to the listing of the GBR as a World Heritage Area in 1981. 

An assessment of the vulnerability of such a complex system, in which not all of the key processes are 

currently understood, will necessarily be simplistic and can only focus on a few of the processes and 

interactions that are presently better understood.
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An assessment of the vulnerability of the GBR to climate change is important to better predict potential 

future changes and as a foundation to investigate and develop potential adaptation strategies. 

The contribution that all GBR industries (tourism, recreation and fisheries) make to the Australian 

economy has been estimated at A$6.9 billion (Australian dollars) per year53,1. Economic returns are 

generated from a highly profitable tourism industry, and smaller reef-related industry sectors such 

as commercial fisheries and recreational activities. Additional ecosystem services provided by reefs 

include coastal protection and the storage of libraries of bioactive substances being investigated for 

potential pharmaceutical benefit. The total annual economic value of coral reefs has been estimated at 

US$100,000 to 600,000 per square kilometre115, although these values are probably underestimates 

as they only consider direct services and outputs. Due to their ecological and economic value, and 

amazing beauty, coral reefs are generally treated as the iconic habitat within the GBR. 

17.2 Exposure and sensitivity to climate change and impacts 
on reefs

17.2.1 Sea surface temperature

17.2.1.1 Exposure

Sea temperature is a key factor for organisms associated with symbiotic dinoflagellates (zooxanthellae) 

or that have a narrow temperature tolerance range. Coral reefs grow in shallow areas with good light 

penetration where water temperature rarely declines below 18°C. Globally, coral reefs are, therefore 

largely restricted to tropical or subtropical waters (between 30 °N and 30 °S), and to coasts without 

regular upwelling of cool deep waters (as occurs along most western continental margins). 

Tropical sea surface temperatures have risen in the past century by 0.5°C, which is largely attributable 

to increasing greenhouse gas concentrations in the atmosphere. This trend is expected to accelerate 

in the current century59,60. Regionally, patterns of exposure to such warming can be quite complex. 

Both long-term average baseline sea temperature and warming trends significantly differ along and 

across the GBR, and at local scales: 

• The long-term mean annual sea temperature is 3°C higher in the far north than in the south of 

the GBR (Lough chapter 2).

• The mean increase in annual sea temperature to date has been greater in the south of the GBR 

(approximately 0.5°C warming at 24 °S) than in the far north (approximately 0.3°C warming at 

12 °S). 

• The difference between summer and winter sea temperature is greater in the southern GBR (6°C 

seasonal change) than in the far northern GBR (seasonal difference: 4°C due to the moderating 

effects of more frequent shading by clouds and warm winters in the north).

• The difference between summer and winter sea temperature is greater in shallower inshore waters 

of the GBR compared with offshore waters, as inshore sea temperature is more than 1°C warmer 

in summer and generally cooler in winter.

• At smaller scales, significant localised warming is often encountered in semi-enclosed bays and 

cooling from upwelling may occur in some offshore sections. 
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Major large-scale thermal stress events tend to coincide with periods that may include extremely 

low wind, low tidal amplitudes, low turbidity, high irradiance and clear skies41,12, resulting in minimal 

wave-induced flow, minimal shading by clouds and reduced backscatter after particles settled. The 

build-up of such heating conditions is particularly critical during times when baseline temperatures 

are already high. Relief comes from wind or tidally induced currents that reduce thermo-stratification 

in the water, and break up the boundary layers over the benthos surface, or from clouds that reduce 

solar heating109,85. Light exacerbates the effect of temperature.

Organisms on a coral reef will experience even greater fluctuations in water temperature than the 

long-term averages suggest. For example, in situ observations at an Australian Institute of Marine 

Science (AIMS) automatic weather stationa on Myrmidon Reef indicate a seasonal variation of 

average daily sea temperatures of about 5°C while differences between observed daily maximum 

and minimum sea temperatures are 9 to 10°C (Lough chapter 2). Marine organisms have adapted 

to their thermal environment to exist between the high and low extremes as much as the mean sea 

temperature. In addition to the direct influence of sea temperature, the thermal environment of some 

organisms may be influenced by the absorptive properties of their colony or body surfaces. While 

sea temperature is a good predictor for the former, the latter is affected by temperature as well as 

irradiance, water flow and surface colour. Colony surface temperatures in darkly pigmented corals, 

for example, can be greater than 1.5°C warmer than ambient water temperatures at high irradiance 

and low currents31. 

Episodically, organisms are exposed to summer sea temperatures that lead to physiological stress or 

even mortality if thermal tolerance limits are exceeded. For example, in 1998 and 2002 on the GBR, 

about 42 and 54 percent of reefs bleached respectively, and up to 5 percent were severely damaged 

in each eventb. There was considerable heterogeneity in the extent of bleaching between reefs of the 

GBR. Such heterogeneity can be linked to climate, weather, spatial and oceanographic factors that 

contribute to determining local and regional temperature exposure. These factors, and measures to 

assess exposure, are summarised in Table 17.1. 

17.2.1.2 Sensitivity

Coral reefs grow and survive in a narrow range of environmental conditions and are therefore 

particularly sensitive to small changes in sea temperature. The sensitivity of ecosystem properties such 

as calcification and productivity is inevitably derived from the sensitivity of species groups such as corals 

and plankton. Chapters 5 to 16 in this volume summarise what is known about the sensitivity of other 

taxonomic groups. A key message is that taxa associated with endosymbiotic algae have particularly 

narrow upper and lower temperature tolerance ranges, while other groups can survive at much higher 

temperatures (eg seven species of tropical seagrasses at 40 to 45ºC for short periods14). 

A diverse range of invertebrates is associated with endosymbiotic dinoflagellates, including many 

anthozoans (eg hard corals, anemones, zoanthids and octocorals), some sessile and pelagic 

hydrozoans (eg fire coral Millepora and some jelly fish), molluscs (eg the giant clam Tridacna,  

a http://www.aims.gov.au/pages/facilities/weather-stations/weather-index.html

b http://www.gbrmpa.gov.au/corp_site/info_services/science/climate_change
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Table 17.1 Factors that affect the exposure of coral reefs to sea surface temperature, reef sensitivity 
and potential impacts

Exposure Factors determining 
sensitivity

Potential and observed impacts

Factors determining 
exposure:

• Latitude

• Cross-shelf position

• Small-scale features 
(embayments, channels)

• Depth (thermal 
stratification in bays)

• Currents, waves, tides 
and wind facilitating 
mixing and gas 
exchange, preventing 
thermo-stratification and 
surface heating 

• Upwelling of cool deep 
water bodies decreasing 
exposure

• Cloud cover

• Boundary layer 
conditions

Measures to quantify 
exposure:

• Mean summer sea 
temperature

• Long-term seasonal 
change in mean 
and maximum sea 
temperature 

• Three-day maximum sea 
temperature

• Degree heating weeks 
(intensity and length of 
exposure) 

• Turbidity

• Flow and other factors 
that determine heat flux

• Species-specific 
phenotypic plasticity in 
temperature tolerance

• Prior physiological stress 
(eg from low salinity, 
high nutrients)

• Mobility 

• Association with 
endosymbiotic algae

• Exposure history (eg 
exposure to high light 
and temperature)

• Community composition

Rise in mean annual water temperature:

• Accelerated metabolism, enhanced 
primary production, calcification, growth 
up to a threshold; declining rates 
thereafter due to heat stress

• Lower water column productivity, less 
food for filter and plankton feeders, 
altered food webs and reef productivity

• Altered reproductive timing  
(eg desynchronisation of spawning,  
shifted breeding season)

• Range extension towards the south of 
heat sensitive species

• Shifts in relative abundances of 
temperature tolerant versus sensitive 
species

• More diseases 

Increased frequency and severity of 
extreme temperature events: 

• Damaged photosystems in primary 
producers

• Corals: bleaching and increased 
mortality; lower reproductive output, 
reduced cover, lower structural 
complexity, lower reef calcification

• Coral-associated organisms: less shelter 
and habitat due to low structural 
complexity

• Facultative coral symbionts or epibionts: 
local extinction of highly specialised 
species (eg coral-associated gobies)

• Fish: shifts in distribution, shifts in life 
history traits

• Macroalgae: higher abundances (more 
substratum available, less shelter for 
herbivorous fish)

• Internal bioerosion: more dead coral 
available as substratum for bioeroding 
organisms, resulting in reduced structural 
strength

• Overall: reduced reef biodiversity, shift 
from net calcification towards net 
erosion, dominance by macroalgae
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and some nudibranchs), and flatworms (Platyhelminthes). For these species, conditions become 

uninhabitable if temperatures drop below 16 to 18°C for more than a few weeks per year, or if they 

increase by 1 to 2°C above long-term maxima for days to weeks. The latter damages the photosystem 

II in the dinoflagellate, disrupting the symbiosis between endosymbiotic dinoflagellates and host, 

and causing the host to ‘bleach’119. In corals, bleaching tends to occur when seasonal maximum 

sea temperatures at that location are exceeded by 4-degree heating weeks (equivalent to four week 

of exposure to temperatures 1°C above the long-term summer maxima; Hoegh-Guldberg et al. 

chapter 10). However, this threshold is a coarse average across species and locations, as bleaching 

sensitivity greatly varies between host taxa, and (to a lesser extent) between the genetic varieties of 

zooxanthellae they harbour79,74 (Hoegh-Guldberg et al. chapter 10). 

The sensitivity of species to sea temperature varies spatially and temporally. Temperature tolerance is 

higher in communities that have developed in naturally warm waters, such as the far northern GBR, 

the Persian Gulf or local areas such as poorly flushed bays, than communities of cooler regions7,33. For 

example, some corals with prior exposure to high temperature or high irradiance on intertidal reef 

flats regularly exposed to low tides and high temperature variability have also been found to be less 

sensitive to heat exposure, either through local selection or possibly through acclimation13. Similarly, 

whether the reproductive output of reef fishes is affected by increased sea temperature depends on 

whether they reside in locations close to their thermal tolerance limits for reproduction. Some species 

from predominantly temperate water fish families (eg Pagrus auratus: Sparidae) already appear to 

be at their thermal limit for reproduction in tropical water105 and their populations on the GBR may 

decline as sea temperatures increase. 

For most species groups and ecological processes on reefs, relative sensitivity to heat exposure and 

the mechanisms of temperature damage are still poorly understood. This is partly because of the 

high number of species that have not been studied, but also because field surveys of sensitivity are 

unavoidably biased by several factors. For example, the timing of surveys crucially influences results: 

a survey conducted soon after the onset of heat stress will result in high scores for sensitive coral 

species and low scores for more persistent species, whereas a survey conducted a few weeks later 

will show mostly persistent species in a stressed state, since the sensitive taxa will have already died 

and disintegrated6. Secondly, a community that has previously undergone a severe heat exposure will 

exhibit apparently low temperature sensitivity during the next heat exposure, if sensitive species have 

not yet re-established and the community consists of mostly persistent species.

17.2.1.3 Potential and observed impact

Rise in mean annual sea temperature
Water temperature is one of the most important variables determining ecosystem function in the 

marine environment. External temperature controls metabolic rates, which, during non-stress 

conditions, increase with increasing temperatures in all but warm-blooded organisms. Consequently, 

persistent warmer temperatures can accelerate life history and population parameters such as 

growth and reproductive age, and ecosystem properties such as rates of calcification and community 

metabolism, until they reach a level where temperature stress accumulates and rates start to 

decline75.
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While warmer sea temperatures increase growth rates in some organisms such as fleshy macroalgae, 

they may slow down growth in others because of the relative lower nutrient concentrations in warmer 

compared to cooler water. At higher temperatures, water column productivity accelerates, depleting 

the standing stock of dissolved and particulate nutrients including phyto- and zooplankton (McKinnon 

et al. chapter 6). For example, kelp and other temperate brown macroalgae grow most prolifically 

at cooler temperatures where nutrient concentrations are higher than in warmer nutrient-depleted 

waters18, while the productivity of other macroalgae might increase at higher temperatures (Diaz-

Pulido et al. chapter 7). Similar responses are likely to occur in other species groups, exemplifying 

that shifts in the relative abundances of species are to be expected, with profound but yet poorly 

understood consequences for ecosystem properties and species interactions. 

Altered reproductive timing has been linked to rising mean annual sea temperature. Of particular 

concern is a potential desynchronisation of the mass-spawning event of corals that occurs annually in 

the GBR. Thousands of coral species from unrelated taxa synchronise their annual spawning based on 

sea temperature and moon phase5. The role temperature plays is demonstrated at Magnetic Island 

off Townsville, where waters are approximately 1ºC warmer than in the surrounding region and a 

proportion of species spawn one month earlier on this reef than conspecifics in cooler waters near-by. 

Similarly, reproduction of fishes on the GBR appears to be triggered by increasing sea temperature in 

at least some tropical reef fishes16,17,98,49, including coral trout102. Increased temperature could cause an 

earlier start to the breeding season in these species, and possibly a longer breeding season if thermal 

limits for reproduction are not exceeded.

Increased sea temperature may also impact life history traits of some reef fish species. Based on 

variation in life history traits of some tropical reef fishes across temperature gradients we might 

expect increased sea temperature to generally shift life histories towards: i) smaller maximum size, ii) 

reduced maximum longevity, iii) earlier maturation iv) longer breeding seasons, and v) shorter larval 

planktonic durations hence shorter dispersal ranges. These shifts would be observed as long-term 

trends in mean values for populations at any given location.

Theoretically, coral reef communities of the GBR might be expected to shift to cooler locations further 

south as global ocean temperatures warm. However, latitudinal expansion in coral distribution would 

crucially depend on a simultaneous southerly expansion of high aragonite saturation with warming 

waters, which is unlikely as a temperature-related increase is predicted to be much smaller than the 

decline due to ocean acidification44. Furthermore, there is a decrease in shallow water areas and an 

increase in siliceous sediments further from the equator, creating conditions that are less suitable for 

reef development. Therefore, while increased temperature may improve conditions for corals and 

other tropical organisms in higher latitudes, and thereby extend the range of some reef species, 

climate change is not expected to result in a poleward shift of coral reef ecosystems.

Increased frequency and severity of heat periods 
Short-term impacts and predictions of the potential long-term impacts of an increasing frequency 

of heat episodes on GBR coral reefs are based on data collected during the two thermal events in 

1998 and 2002, and on the present understanding of mechanisms involved in reef disturbance and 

recovery (Table 17.1). There are documented impacts of these events on many components of the 

ecosystem, including corals (Hoegh-Guldberg et al. chapter 10), seabirds and baitfish distribution 
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(Congdon et al. chapter 14, Kingsford and Welch chapter 18) and fleshy macroalgae (Diaz-Pulido et 

al. chapter 7). Changes to coral cover and available substrate following disturbance resulted in phase 

shifts on some reefs to an algal-dominated system.

The primary observed impact of episodic heat periods on coral reef is stress in photosynthetic 

organisms, coral bleaching and increased mortality of other temperature-sensitive species (chapters 5 

to 16). Local diversity in reef communities is immediately reduced after heat episodes with the most 
sensitive species disappearing while more robust species persist or expand, such as the replacement 
of sensitive coral species by fleshy macroalgae that was observed after mass bleaching mortalities55,29,79, 

76,122,42. For example, most species of reef-inhabiting ascidians disappeared within two years following 
the 1998 ENSO event, while two bioeroding species increased significantly in numbers64.

Further shifts in species composition result from reduced recruitment and growth rates in stressed 
but surviving taxa. For example, corals recovering from bleaching have up to 80 percent reduced 
reproductive output and growth for up to two years after the event82,113. During recovery, communities 
initially consist of sparse populations of young colonies. Depending on nutrient levels and herbivore 
abundances, macroalgae can proliferate and blanket space previously occupied by corals, further 
retarding coral recruitment and reef recovery through space occupation. Such a phase shift has been 
described in detail in the Caribbean, where extensive macroalgal abundances established after storms 
removed adult corals and overfishing and disease removed the main guilds of herbivores41,57. Some 
evidence for such phase shifts also exists for the Indo-Pacific87.

The indirect effects of coral mortality on organism groups not directly killed by the heat episode, 
but dependent on the reef complex for shelter, are likely to be severe (Hutchings et al. chapter 11, 
Munday et al. chapter 12). The exposed skeletons of corals that die after bleaching are colonised almost 
immediately by benthic algae and other pioneer colonisers, and in a short period, start eroding, with 
three main consequences. First, coral reefs shift from a state of net calcification to erosion, less able to 
withstand exposure to storm waves. Second, coral recruitment is inhibited. Third, habitat is lost for the 
numerous invertebrates and reef fishes that are associated with corals88,117. For example, fish abundance 
and biodiversity can decline severely in parallel with declining coral cover69. In one case from Papua 
New Guinea, more than 75 percent of reef fish species declined in abundance after loss of coral cover 
post-bleaching, with half declining to less than 50 percent of original abundance, and importantly, 
several rare species became locally extinct63. Munday84 also demonstrated the local (and possibly global) 
extinction of a specialist species of coral-inhabiting fish (goby). This study suggested that overall, habitat 
specialists are more likely to be prone to extinction than generalists, because of their dependence on 
specific habitat, and because of restricted population size and limited spatial distribution. 

A major mechanism for declines in fish abundance appears to be the loss of living coral as recruitment 
sites for juvenile fish. Research by Jones et al.63 suggests that marine reserves will not always be 
sufficient to protect fish populations if coral mortality is not prevented. Similarly, abundances and 
species richness in reef fish species declined after the loss of coral cover and structural complexity from 
coral bleaching124. In a study from the Seychelles, Wilson et al.124 reported abundance in six species 

as ‘critically low’, and the local extinction of four species of fish appeared likely. Small fish species had 

the highest probability of decline, possibly due to their dependence on coral for food and shelter, 

increased competition over the remaining space, increased susceptibility to predation, and because 

many reef fish species require complex coral framework to recruit from the plankton. 
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Reef fish contribute to maintaining a wide range of ecological functions in coral reefs, and changes 

in their abundance can have long-term implications on ecological processes. For example, many 

zooplankton feeding and herbivorous fish depend on the reef framework for shelter. Zooplankton 

feeding fishes contribute to the capture of pelagic nutrients and pass them through excretion into 
benthic communities46. Herbivorous fish species play an essential role in controlling macroalgal 
abundances. Herbivores often increase in abundance following a loss of coral cover124, presumably 
because more area becomes available for algal growth following coral bleaching, however, even 
these species ultimately decline as habitat structure is lost103,38. Therefore, the concern is that as the 
reef structure is lost, an ultimate decrease in abundance of herbivores will result in less control of 
proliferating algae and delayed recovery. 

Other examples of cross-benefits are the excretions of damselfish, Dascyllus marginatus, which 
enhance growth and reproduction in their host coral Stylophora pistillata73. Crabs of the genus 
Tetralina, which inhabit the bleaching sensitive corals Acropora and Pocillopora, also protect their 
host against sedimentation112. Both Tetralina and Dascyllus only inhabit living corals, so their habitat 
is locally lost with the death of their host corals. However, for most coral-associated species that 
disappear when the host dies, functional roles are poorly understood and consequences of their 
disappearance cannot be predicted.

In conclusion, it appears inevitable that coral reef communities will change profoundly in response 
to rising mean annual sea temperature and episodic heat events. This change will involve a loss of 
biodiversity, declining ecosystem functions and services such as reef fishery yields, and a reduced 
aesthetic appeal for tourists. Based on present trajectories it appears almost certain that the GBR will 
experience a significant reduction in diversity, with sensitive species becoming rare or disappearing if 
no refuges exist. Some robust species that can tolerate or even benefit from higher temperatures will 
proliferate and gain competitive dominance over others. Overall, the potential and observed impacts 
of ongoing warming and episodic heat events is likely to be a substantial simplification of structural 

and ecological complexity, a shift from coral to algal dominance, accelerated erosion, reduced 

abundances or loss of temperature sensitive species, and the eventual extinction of coral-associated 

highly specialised species with restricted distributions and small population sizes.

17.2.2 Irradiance

17.2.2.1 Exposure

Irradiance (both visible light and ultraviolet (UV) light) is a key environmental factor for coral reefs. 

Coral reefs need sufficient irradiance for photosynthesis, and are therefore restricted to the upper  

50 metres depth in clear oceanic waters, and four metres in turbid inshore waters128. However, too 

high levels of irradiance during hot periods can cause permanent physiological and structural damage 

to photosynthetic symbiotic organisms through photoinhibition and other stress processes. 

Irradiance varies naturally by two to three orders of magnitude in coral reefs, at scales ranging 

from centimetres to whole reefs3. The main factors determining variability are time, local shading, 

surface orientation, depth, water clarity, latitude and cloud cover (Table 17.2). Globally, mean annual 

irradiance is greatest in shallow and clear waters of arid equatorial regions where sun inclination is 

steep and cloud formation is rare. On the GBR, exposure is greatest in shallow clear offshore waters, 
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decreasing with depth and towards the coast as suspended particles backscatter a large proportion 

of solar irradiance on turbid inshore reefs. Latitudinal differences in irradiance on the GBR involve sun 

inclination angle and cloud cover, both of which are greater in the northern than the southern GBR 

(Lough chapter 2). 

Irradiance can be affected by climate change through two mechanisms. Firstly, climate change can 

alter weather patterns and hence cloud cover. Cloud cover is reduced during droughts, but can also 

increase due to greater evaporation from warm sea surfaces. Changing weather patterns may also 

alter the frequency of drought-breaking floods, leading to terrestrial runoff of sediments and nutrients 

into the oceans that can reduce water clarity at regional scales up to several weeks4. 

Table 17.2 Factors that affect the exposure of coral reefs to changes in irradiance, and direct or 
proxy measures

Factors determining  
exposure

Factors determining 
sensitivity

Potential and observed 
impacts

• Water depth

• Turbidity 

• Latitude (sun inclination)

• Cloud cover

• Surface roughness (waves)

• Steepness and aspect of reef 
slope

• Diurnal and seasonal changes

• Photosynthetic versus non-
photosynthetic organisms

• Symbiotic versus non-
symbiotic

• Pigments that absorb 
photosynthetic and UV 
radiation.

• Species-specific 
photoacclimation

• Susceptibility to, and factors 
that heighten photoinhibition 
and photodamage (eg 
anomalous temperatures)

• Orientation and depth of 
sessile organisms that can’t 
move into shade

• Damage to photosystem, 
damage to DNA 

• Increased mortality, reduced 
reproduction and growth

• Shift between phototrophy 
and mixotrophy/ 
heterotrophy

• Breakdown of symbiosis

17.2.2.2 Sensitivity

The photophysiology of corals, and their sensitivity to altered irradiance, is reviewed in detail in 

chapter 10 (Hoegh-Guldberg et al.). For most photosynthetic organisms on coral reefs, a moderate 

dose of irradiance, which reaches but not greatly exceeds saturation irradiance for several hours a 

day, should provide ideal conditions for growth. Extremely high levels of visible light and ultraviolet 

radiation can stress or permanently damage both photosynthetic and non-photosynthetic organisms, 

disrupting photosynthesis and damaging protein, DNA and symbiosis. While mobile organisms 

can move into shade to avoid damaging irradiance, sessile organisms that grow on upper surfaces 

in shallow water incorporate pigments such as mycosporine-like amino acids to protect against 

damage by ultraviolet radiation26. For photosynthetic organisms such as corals and benthic algae, 

extreme levels of photosynthetically active radiation can lead to photoinhibition and damage to 
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the photosynthetic apparatus, reducing productivity, growth and reproduction36. Too low irradiance 

doses can also cause stress, by impeding photosynthetic carbon acquisition and therefore growth 

and reproduction4. 

Within limits, corals can compensate for changes in exposure to light by photoacclimation, greatly 

widening the environmental niche where species can grow2. The sensitivity of corals to altered 

irradiance therefore greatly depends on their species-specific ability for photoacclimation. For species 

with poor photoacclimation, prolonged shading from thick cloud cover or turbidity can reduce 

primary production and growth rates as light for photosynthesis becomes limiting (Hoegh-Guldberg 

et al. chapter 10). 

17.2.2.3 Potential and observed impacts

The entire GBR ecosystem is unlikely to be fundamentally altered by changing irradiance from 

climate change, as the fluctuation in irradiance is naturally high and no increasing UV trend has been 

observed. However, strongly reduced irradiance for a prolonged period of time, such as resulting 

from prolonged turbidity, can lead to mortality in photosynthetic organisms growing in deep water 

at the lower limit of their depth distribution4. Strongly enhanced irradiance for a prolonged period 

can also be fatal through initiation of DNA damage and of solar heat stress in very shallow and 

intertidal water. For example, local extinctions from heat exposure at intertidal sites in California can 

be predicted from the timing of low tides in summer, with low tides at noon leading to maximum 

solar heating48.

The greatest impact of high irradiance is probably found during hot periods. This is because high 

photosynthetically active irradiance and ultraviolet radiation can exacerbate temperature-induced 

damage to symbiotic photosystems62,54,71,72. On the reef, large-scale thermal stress events, usually 

with periods of high irradiance and low winds41,12,109, result in minimal waves, reduced shading by 

clouds, and reduced backscatter after particles settled. Such conditions lead not only to increased 

photophysiological stress, but also to a warming of the sea water and of benthos surfaces, with all 

processes potentially contributing to inducing coral bleaching and mortality121. Similarly, mortality from 

bleaching is often greatest in corals growing in shallow water and declines with depth. However, the 

reverse pattern is only found due to variation in community composition, with tolerant species being 

found in the shallows while more sensitive corals may be found in the deeper areas of a reef55. 

17.2.3 Ocean acidification

17.2.3.1 Exposure

Over the past 720,000 years atmospheric carbon dioxide (CO2) concentrations have varied between 

180 to 300 parts per million. Human activities have increased the atmospheric CO2 concentration 

from 280 parts per million before the industrial revolution to 378 parts per million in 2005106, with 

further increases up to 540 to 970 parts per million projected for 2100 if no drastic mitigation action 

occurs59,47. This increase in oceanic CO2 has already resulted in a reduction of oceanic pH by an 

estimated 0.1 units94,89 and of aragonite supersaturation from 4.6 to 4.065. Depending on the CO2 

emission scenario used, further increases in CO2 are expected to lower oceanic pH by 0.3 to 0.5 units 

over the next 100 years, and 0.3 to 1.4 units over the next 300 years94. As CO2 increases and pH 
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declines in the oceans, the ocean carbonate system also changes to lower aragonite supersaturation, 

possibly as low as 2.8 by the year 210065. This has important implications for calcifying organisms 

such as corals, molluscs, coccolithophores and foraminifera that rely on carbonate supersaturation to 

form their carbonate skeletons (Table 17.3). 

Coral records have shown that at Flinders Reef in the Coral Sea, oceanic pH has fluctuated with 

a periodicity of 55 years over the last 300 years, coinciding with the Pacific Decadal Oscillation89. 

However, the current and projected rate of CO2 increase is about 100 times faster than has occurred 

over the past 720,000 years, that is, human greenhouse gas emissions are rapidly changing ocean 

chemistry to a level outside the range experienced by present-day coral reef habitats, and what most 

marine calcifying species have experienced throughout the past 55 million or possibly hundreds of 

million of years97,94,47. 

The distribution of excess CO2 in the oceans has not been spatially uniform; carbonate super-

saturation levels are highest in the tropics and decline to lower levels towards the temperate zone 

and areas of upwelling97. Aragonite saturation levels will however decline fastest in areas of highest 

supersaturation. The CO2 related decline in supersaturation is far greater than the increases due to 

reduced solubility at warming temperatures. 

Table 17.3 Factors that affect the exposure of coral reefs to ocean acidification, and direct or  
proxy measures

Factors determining 
exposure

Factors determining 
sensitivity

Potential and observed 
impacts

• Atmospheric CO2

• Latitude

• Temperature (small effect 
on solubility of key ion 
species) 

• Calcium carbonate skeleton

• Rates of physical and 
biological erosion and 
dissolution

• Less biotic and abiotic 
calcification, shift from 
calcification to erosion

• Reduced linear extension 
(‘growth’) and skeletal 
density (stability) in calcifying 
organisms

• Increased primary production 
(some plankton species due to 
high availability of CO2) 

17.2.3.2 Sensitivity

Globally, coral reefs built of calcium carbonate can only be found in waters where carbonate ion 

concentrations are above 200 micromol per kg65. Evidence is strong that a reduction in pH following 

rising CO2 will cause profound changes in the physiology of marine calcifying organisms and in 

reef processes. Direct effects will be greatest for calcifying algae such as crustose coralline algae and 

Halimeda, and calcifying invertebrates such as corals and foraminifera94,51. The sensitivities of calcifying 

and non-calcifying organisms to ocean acidification are described in detail in chapters 5 to 16.
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17.2.3.3 Potential and observed impacts

Some researchers have concluded that ultimately changes in ocean chemistry may have greater 

implications for many marine species than warming temperatures47. With atmospheric CO2 rising, 

calcifying organisms of the GBR will be exposed to declining carbonate ion saturation state and 

seawater pH94. The full consequences of such dramatic and ongoing change in ocean chemistry are 

still unknown. Experiments have shown that a doubling of CO2 partial pressure compared with pre-

industrial CO2 levels reduces calcification rates (the product of skeletal density and linear extension) 

in corals and coralline red algae by 10 to 40 percent34. A three-month experimental reduction in pH 

by 0.7 units was found to lower metabolic rates and growth in mussels81 possibly from reduced rates 

of shell formation. An elevation of atmospheric CO2 by 200 parts per million over six months, which 

lowered pH by 0.03 units, reduced both growth and survivorship in gastropods and sea urchins108. 

The physiology of non-calcifying organisms can also be modified by exposure to elevated CO2 

and reduced pH. However effects appear to vary substantially between groups, and limited studies 

exist in which CO2 was realistically manipulated over longer periods, therefore longer-term effects 

and differences in sensitivity remain poorly understood. For example, short-term experimental CO2 

elevation resulted in reduced protein synthesis and ion exchange in some invertebrates, but not in 

the species of fish tested (reviewed in Pörtner and Langenbuch91). Importantly, non-calcifying marine 

plants are unlikely to be affected by increased CO2, as most marine plants (except seagrasses) are 

considered carbon-saturated39. Little information exists on the effects of changing pH on fertilization 

and the survival and development of larvae and propagules, and other early life history stages in any 

one species.

Although fluctuations in oceanic pH, recorded at Flinders Reef throughout the last 300 years were 

unrelated to coral calcification rates, it is predicted that future changes in pH will be outside the 

range that coral reefs have experienced in modern times89 and that ecosystem calcification will 

decrease while carbonate dissolution will increase65,94. Rising atmospheric CO2 will therefore lead 

to dramatically reduced net calcium carbonate production compared with pre-industrial times, and 

severely weaken the ability of GBR coral reef habitats to support live coral and carbonate structures 

against the forces of physical and biological erosion and dissolution67. 

Presently, saturation levels are highest in the far northern GBR. By 2040, saturation levels are estimated 

to be ‘marginal’ throughout the GBR and by 2100 to be ‘low’ in the northern GBR and ‘extremely 

low’ in the southern GBR67. Aragonite saturation levels and pH will therefore drop below levels that 

are considered critical for calcification first in the southern GBR, preventing a latitudinal displacement 

of species towards cooler southern waters in response to ocean warming. These changes must be 

considered in conjunction with changes in sea temperature and other aspects such as the frequency 

and intensity of heat periods – the combined effects may well be greater than the sum of the parts. 

The flow-on effects of collapsed reef structures, when erosion exceeds calcification, on populations 

of fish and other coral-associated organisms that rely on the reef habitat are discussed in section 

17.2.1.3.
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17.2.4 Tropical storms

17.2.4.1 Exposure

Coral reefs of the GBR are periodically exposed to highly destructive tropical cyclones during the 

summer monsoon season. The total amount of energy dissipation and monetary damage of structures 

above water increases as the cube of a storm’s wind velocity (ie a doubling in maximum sustained 

wind speed results in an eight-fold increase in repair costs), with the diameter and transition time 

of the storm additionally contributing to determine its hazard28. Cyclonic winds can also damage 

structures under water, through energy dispersed by waves, swell and surges. This section will assess 

the direct damage to coral reefs from storm waves (Table 17.4). The following section will cover the 

indirect effects from cyclone-related exposure to floods and sediment runoff from land. 

Spatially, tropical cyclone activity is highest between latitudes 16 to 20 °S, with activity declining to 

low levels south of 22° latitude, and extremely few occurring north of 12° latitude92  (Lough chapter 

2). Even so, almost all reefs of the GBR have been affected by at least one tropical cyclone within 

the last 30 years92. Exposure also differs across the continental shelf, around reefs and with depth. 

Table 17.4 Factors that affect the exposure of coral reefs to changes in storm frequency, and direct 
or proxy measures

Factors determining 
exposure

Factors determining 
sensitivity

Potential and observed 
impacts

• Latitude

• Cross-shelf position 
(exposure to open Pacific 
swell versus shelter behind 
outer reefs)

• Depth

• Reef aspect (windward 
versus leeward side)

• Mobility and territoriality in 
fish and invertebrates

• Growth forms – sessile 
organisms (encrusting or 
massive versus fragile or 
slender)

• Low aragonite saturation 
and high nutrient 
concentrations reducing 
skeletal density and 
substratum stability of corals

• Extent of bioerosion 
occurring in community 

• Cross-shelf position (more 
fragile growth forms 
inshore)

• Coral community type 

• Increased coral mortality, lower 
coral cover and diversity

• Removal and redistribution 
of accrued calcium carbonate 
structure

• Greatly reduced structural 
complexity (smaller colonies, 
fewer fragile growth forms)

• Increased availability of 
substratum for algae and other 
pioneers after destruction of 
living benthos

• Less shelter for coral-associated 
organisms 

• Fewer coral dwelling fish and 
other organisms (reduced 
biodiversity)

• Shift in species composition 
towards taxa that are less 
affected by the outcomes of 
storms
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Windward sides on offshore reefs at the outer edge of the continental shelf are impacted by unabated 

swells from the open Pacific Ocean, while leeward sides on inshore reefs are the most sheltered 

locations. For example, outer reefs experienced ‘phenomenal’ wave heights (up to 15 metres), while 

waves on inshore reefs and along the coast were about five metres during Cyclone Ingrid in 2005 

(predictions by the Bureau of Meteorology). As the depth of wave energy is a direct function of wave 

height, this cyclone damaged offshore reefs down to 20 metres and deeper, whereas damage on 

inshore reefs was restricted to less than five metres depth (K. Fabricius unpublished data). 

Consensus appears to be emerging from predictive models that the intensity and maximum wind 

speeds of tropical cyclones is likely to increase with rising sea temperature, while the frequency of 

cyclones will remain unaltered68,118,56. The unprecedented number of severe hurricanes in the USA and 

the severity of three cyclones on the GBR in the summers of 2005 and 2006 have been attributed to 

unusually warm sea temperatures28,120. It is therefore possible that severe category 4 and 5 tropical 

cyclones may become more common on the GBR, further increasing the degree of disturbance of 

coral reefs.

17.2.4.2 Sensitivity

Susceptibility to tropical cyclone damage varies widely between species and growth forms, and also 

changes across the continental shelf and with depth. In general, species with slim bases and slender 

branches, such as branching Acropora or large upright seaweeds (eg Sargassum), and organisms 

residing in shallow water are highly sensitive to cyclone damage. Whereas low growing (eg turf 

algae), massive or encrusting taxa (eg Porites corals) and deep water organisms have a higher survival 

probability80. Those made brittle by internal bioerosion will suffer even greater damage by storm 

erosion. On sheltered inshore reefs, branching corals tend to have lower skeletal density, more slender 

growth forms and more internal macro-bioeroders than their offshore counterparts that are adapted 

to frequent storm swells. Substratum on inshore reefs is also far weaker than on offshore reefs, due 

to low calcium carbonate precipitation and low abundance of crustose coralline algae (0.2% cover 

inshore, compared with greater than 35% on offshore reefs of the GBR32). Difference in substratum 

strength determines how susceptible massive corals are to wave damage, as massive colonies are 

dislodged rather than broken by waves80. Obviously, the combined effects of ocean acidification, 

nutrient enrichment from terrestrial runoff and storm damage on reef growth and complexity are 

likely to be far greater than the effects of each of these factors individually. 

Populations of fishes, especially juvenile and sub-adult fishes, may also experience mortality and 

displacement, although some larger and non-territorial fish move into deeper water to avoid storm 

waves70. A large proportion of fishes and other mobile fauna later decline in abundances through the 

loss of habitat and shelter124.

17.2.4.3 Potential and observed impact

The main effects of storm waves on coral reefs have been categorized as: i) coral breakage, ii) coral 

colony dislodgement, iii) tearing of octocorals, iv) removal of reef matrix, v) burial of organisms by 

shifted sediments and rubble, vi) scarring of colonies by projectiles, vii) removal of algae on inshore 

reefs, and viii) algal blooms22. Reefs in the path of severe (slow-moving category 4 or 5) tropical 

cyclones can lose all but the most robust organisms down to more than 20 metres depth. Reef 
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structure is flattened, and coral skeletons are often shifted into large piles or carpets of rubble, which 

are unsuitable as settlement substratum for new corals until consolidation. On offshore reefs, rubble 

is cemented together by calcium carbonate (CaCO3) precipitation, and waves remove remaining 

loose pieces within a few years. On inshore reefs in contrast, rubble fields may remain unconsolidated 

for more than 10 years. Reef recovery from extreme category 4 and 5 cyclones is slow, because few 

colonies survive on site to serve as brood stock to recolonise denuded areas. Recovery times may be 

20 years or more for severely damaged reefs, depending on connectivity to larval sources further 

upstream, and the survival rate of loose fragments. Occasionally, reefs that were stressed through 

other forms of disturbance (eg overfishing or poor water quality) have undergone a phase shift after 

being hit by a cyclone, developing a new and apparently stable state of algal dominance after corals 

had been removed by the storm57,96.

Less extreme cyclones cause more patchy damage, with mosaics of damaged and unbroken patches 

side by side, and substratum complexity remaining relatively high. Such moderate damage sets back 

species that may otherwise start monopolising space, and hence may contribute to maintaining high 

diversity on coral reefs90. Unlike corals surviving temperature stress (with low reproductive output 

up to two years after the event), unbroken cyclone survivors produce a normal amount of gametes 

that will recolonise impacted areas in the following years unless there is no available substrate due 

to increased algal cover. The speed of recovery from tropical cyclones therefore depends crucially on 

cyclone intensity and its speed of passage, influencing the proportion of colonies that  survive and 

the three-dimensional substratum complexity. 

Populations of non-calcifying fleshy macroalgae such as Sargassum can also be reduced by cyclones 

if holdfasts are torn off the substratum95. Loosely attached ephemeral algae are easily removed, but 

their propagules may rapidly colonise the available space after coral mortality27,124.

Disturbance by severe tropical cyclones, which reduces habitat complexity, has been found to 

immediately impact fishes from all trophic levels (but especially small fishes) more severely than 

disturbance by coral bleaching and by outbreaks of the coral-eating starfish Acanthaster planci, which 

kill corals but leave structural complexity intact. However, after skeletal erosion of dead coral colonies, 

the long-term consequences of coral loss through coral bleaching and crown-of-thorn starfish 

outbreaks may be much more substantial than the short-term effects currently documented.

As the total energy dissipation in storms increases as a cube of wind speed28, a potential increase 

in the intensity of cyclones would have profound negative implications for coral reefs. Coral cover, 

substratum complexity and abundances of species that are slow colonisers would all decline. Fish 

stock and abundance of macro invertebrates that depend on corals would also decline, while algal 

cover would increase (see section 17.2.1.3).

17.2.5 Rainfall patterns and river flood plumes

17.2.5.1 Exposure

Nutrient concentrations are critical for healthy coral reefs, as most reefs are adjusted to growing 

in low-nutrient environments through efficient nutrient recycling within and between organisms. 

Changing weather patterns through climate change, with more frequent droughts and more 
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severe floods may significantly increase the amount of terrestrial runoff into the GBR, with profound  

ecological consequences.

Terrestrial runoff through river flood plumes discharges large amounts of nutrients, sediments and 

freshwater into the GBR lagoon. Due to the predominantly southeasterly winds and northward 

moving inshore currents, flood plumes tend to spread northward along the coast, constituting the 

most important source of new nutrients to the GBR lagoon37. The amount, characteristics and physical 

transport processes of this newly imported material vary spatially, depending on rainfall, soil and slope 

properties, and land use. Flood plumes regularly inundate some of the nearshore reefs, occasionally 

reaching some of the mid-shelf reefs but rarely reaching offshore reefs of the GBR19. Altered climate 

and rainfall regimes would, therefore, predominantly affect the exposure of some inshore reefs 

to freshwater, sediments and nutrients from terrestrial runoff, with the severity and frequency of 

exposure depending on their location relative to rivers (Table 17.5) and could increase the frequency 

of flood-born impacts on mid-shelf reefs.

Extreme flood events are either associated with low-pressure systems during the summer monsoon 

or tropical cyclones (see section 17.2.4). It is unclear from present model projections whether rainfall 

will, on average, increase or decrease in northeast Queensland with further climate change (Lough 

chapter 2). The magnitude of droughts and high intensity rainfall events are likely to be greater in a 

warmer world106 compared to current climate conditions with consequent effects on river flow and

Table 17.5 Factors that affect the exposure of coral reefs to changes in rainfall and river flood 
frequency, and direct or proxy measures

Exposure Factors determining 
sensitivity

Potential and observed 
impacts

Spatial factors:

• Cross-shelf position

• Distance to river

• Wind direction and strength 
during plume

• Rainfall over the catchment  
(wet tropics versus dry tropics)

• Depth 

• Reef morphology (gradual versus 
steep slopes, semi-enclosed bays 
versus well-flushed channels).

• Extent of drought conditions 
between rainfall and flood events

Measures of exposure:

• Salinity

• Sedimentation

• Nutrients

• Other pollutants (agrochemicals, 
etc)

• Species specific and 
life-stage specific 
tolerance of low salinity, 
low or variable light, 
high sedimentation, 
pollutants (recruits 
versus adults)

• Nutritional strategy 
(phototrophy versus 
heterotrophy, filter 
feeding internal 
bioeroders, planktonic 
larvae, etc) 

• Nutrient limitation

• Increases in nutrients and 
sediments, leading to trophic 
shifts from phototrophy to 
heterotrophy; promotion of 
filter feeders, bioeroders

• Increased algal growth, 
reduced coral recruitment

• Increased flood mortality 
events.

• Reduced biodiversity, 
altered coral community 
composition 

• More frequent outbreaks of 
crown-of-thorns starfish
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the spatial extent of flood plumes affecting the GBR. Southeast Queensland is predicted to become 

dryer, with fewer days of cloud cover and more frequent droughts, potentially affecting the runoff 

pattern in the southern GBR from the Burnett and Fitzroy Rivers. As in the northeast, most models 

predict more intense rainfall between long periods of drought. The interaction of these two factors is 

important as catchments that lose grass or tree cover during periods of drought (and more frequent 

bush fires) will deliver more soil, soil-associated nutrients and pesticides to the GBR during intense 

rainfall events. 

17.2.5.2 Sensitivity

The sensitivity of reef-inhabiting organisms to altered terrestrial runoff patterns, and the various 

components (sediments, dissolved inorganic nutrients, particulate organic matter, pesticides and 

light loss from turbidity) varies greatly between species, life stages, and functional groups. A review 

of the contrasting sensitivities of species and group is available30 along with chapters 5 to 16 in this 

volume. Enrichment with dissolved inorganic nutrients and particulate organic matter, increased 

sedimentation and exposure to pesticides, cause a cascade of direct and indirect effects from which 

few ecosystem processes are spared. However, the groups most sensitive to these changes tend to be 

early life stages (eg coral recruits), nutrient limited phototrophs (eg some macroalgae), and nutrient-

limited filter feeders (eg some internal bioeroders, some planktonic larvae). Nutrient enrichment 

promotes otherwise nutrient-limited groups, which then compete or prey upon other groups. 

17.2.5.3 Potential and observed impacts

Extreme rainfall, resulting in large river floods, brings low salinity, sediment and nutrient-enriched 

waters onto coral reefs. Freshwater plumes primarily affected nearshore reefs within 20 kilometres 

of the coast, with extreme events resulting in freshwater on mid-shelf reefs. Fabricius30 reviews some 

of the main impacts of changing water quality on inshore coral reefs. The most serious effects of 

enhanced exposure to materials from terrestrial runoff are reduced rates of reproduction and growth 

in corals and improved conditions for internal macro-bioeroders and other heterotrophic organisms. 

Growth of some benthic turf and fleshy macroalgae can be promoted, leading to a shift in species 

composition on reefs from coral to algal dominance. In contrast, most crustose coralline algae are 

highly sensitive to sedimentation, and may disappear in areas exposed to terrestrial runoff, having 

implications for coral recruits that settle on them. More turbid waters, with less structural complexity, 

are also associated with lower abundances of herbivorous larger fishes, possibly also releasing 

macroalgal abundances on the GBR126. 

Lastly, drought-breaking floods have been associated with the initiation of primary outbreaks of 

the coral eating crown-of-thorns starfish, possibly because the planktonic larvae depend on high 

abundances of large phytoplankton for their development, and such phytoplankton is most abundant 

in nutrient-rich conditions9,11. Once primary starfish outbreaks have been initiated, outbreaks can 

spread to reefs far away from terrestrial runoff. Therefore, terrestrial runoff affects not only some 

inshore reefs but can also have severe effects on remote offshore reefs11. Overall, reefs frequently 

exposed to terrestrial runoff have a lower level of resilience (lower coral recruitment, more algae and 

greater internal bioerosion) compared to reefs not exposed to frequent runoff. This has important 

implications for reefs exposed to more frequent disturbance from climate-related changes such as 

coral bleaching and more intense storms.
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17.3 Adaptive capacity
While there is considerable information regarding how coral communities may respond to the 

projected changes, little is known as to how coral reefs as habitats will adapt to these changes. It 

is important to understand that adaptation in this context is not the same as biological adaptation, 

which pertains to the influence of natural selection on the genotypes within a population (evolution). 

This is important as evolutionary processes take considerable time and are generally not fast enough 
to keep pace with the speed of changes envisaged under current climate projections. In this respect, 
adaptation entails processes such as physiological acclimation (phenotypic change) and shifts in 
community composition over time. 

Chapter 10 (Hoegh-Guldberg et al.) reviews the extent to which coral communities are likely to 
adapt to climate change. These responses will occur over a range of different time scales and involve 
a degree of uncertainty in the direction and degree of adaptation possible. At the coral reef habitat 
level, adaptation will be expressed as a shift to hardier species, a shift toward certain functional 
groups or a phase shift to algal dominance. Disturbances will selectively eliminate sensitive species; 
more tolerant taxa will become dominant in the community so at the community-level there is a 
decrease in short-term sensitivity. This effect is location-dependent and will be difficult to quantify as 
little is known about the sensitivity of many species living on coral reefs. Understanding these shifts 
will also require greater knowledge of interdependencies. Work on fish populations is providing some 
important illustrations of how changes in one component (coral cover) can have major impacts on 
other components. Wilson et al.124 reviewed and analysed studies that documented the effects of 
the loss of coral on coral reef fish communities at many sites across the globe. They found that 62 
percent of fish species declined in abundance within three years of disturbances that resulted in a 
greater than 10 percent decline in coral cover. Abundances of species reliant on live coral for food and 
shelter were the most consistently affected, while some of the other species, such as those that fed 
on invertebrates, algae and/or detrital food sources actually increased in the short-term. These types 
of shifts in fish communities are assessed in chapter 12 (Munday et al.).

While global extinctions are unlikely in most species due to the size of distributions, local extinctions 
are probable as coral reefs decline. Some coral-dependent rare endemic species with small ranges 
however, could be at risk of global extinction, as specific reef features are critical to reproductive 
success (eg coral dwelling gobies84). These and other issues will need greater investigation before the 
extent to which the current rapid climate changes will drive extinctions in tropical marine ecosystems 
can be fully understood.

An eventual increase in the temperature tolerance of coral reef species through genetic adaptation is 
conceivable, but the time frame involved in such biological adaptation is most certainly too slow to 
keep up with the present and projected speed of climate change. Arguments supporting the concept 
of adaptation to higher temperatures are largely based on the spatial differences in temperature 
tolerances of reef species. For example, there is higher temperature tolerance in far northern GBR 

corals compared with southern corals, and in corals on intertidal reef flats that were previously 

exposed to bleaching-inducing levels of irradiance. In contrast, presently there is no mechanism 

known how calcifying organisms would adapt to low carbonate ion concentrations in the ocean. 

Throughout geological times, rates of calcium carbonate precipitation and biotic calcification have 

dramatically declined when carbonate concentrations or the carbonate saturation state in the oceans 
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lowered due to enhanced volcanic activity. Coral reefs ceased to exist for many millions of years 

during and after such periods, and no means of adaptation seem to have been developed throughout 

the evolutionary history of corals and other calcifying organisms65. The predicted decline in carbonate 

ion concentrations to levels below 200 micromol per kg might represent an even greater threat to 

coral reefs in the medium to longer term than increases in sea temperature. This conclusion must be 

tempered with the observation that a 2°C rise in sea temperature over the next hundred years.

The loss of reef structure as atmospheric CO2 concentrations approach 450 to 500 parts per million is 

a major constraint to adaptation. If the ability of reef calcifying organisms to deposit calcium carbonate 

dwindles to zero, then reef erosion will dominate, and species and communities that are dependent 

on the structural complexity of coral reefs will rapidly change. Reefs will be dominated by earlier 

successional stages of turf or macroalgae, lower coral cover, more robust species and lower diversity. 

In some sense, this would be an adaptive step as the ecosystem will be less disturbed at the same level 

of exposure, however it would represent a new and ecologically simpler community, and its splendor 

and value for activities such as fishing and tourism would certainly be dramatically lowered. 

The adaptive capacity at the ecosystem level will mainly be limited to shifts in community structure. 

Given that the rate of climate change is perhaps two orders of magnitude faster than shifts seen 

after the last ice age, it is not expected that genetic evolution will keep pace with greenhouse forced 

climate change. The second highly important characteristic of global climate change is that the earth 

has moved away from a climate system that is stable over thousands of years to one which is changing 

rapidly at decadal time scales. The criteria for selection are, therefore, changing continuously, which 

makes it more difficult for ecosystems to adapt and presents major challenges for managing tropical 

marine ecosystems.

17.4 Vulnerability and thresholds

17.4.1 Future reef scenarios

A number of models have been developed to project future impacts of climate change on coral 

reefs, with projections ranging from shifts in coral community structure to total ecosystem collapse. 

Wooldridge et al.127 modelled successional trajectories and how they are modified by climate 

disturbance regimes. Their models found that more heat-tolerant coral species such as massive Porites 

are differentially favoured over heat-sensitive species such as Acropora; however the prevention of 

macroalgal dominance in free space, by protection of herbivores and of water quality, determined 

whether or not there was a reasonable probability that viable hard coral populations would persist 

beyond 2050. The study clearly showed the essential role management actions can play in enhancing 

the resilience of reefs at a time of increasing disturbance frequency.

Johnson et al.61 simulated the effects on reefs of bleaching events (like that in 1998) occurring once 

per decade on the GBR 200 years into the future. The model predicted significantly degraded reefs 

by 2100, with approximately 75 percent cover of turf and coralline algae and 25 percent coral cover 

with decadal bleaching but no further warming. With further warming at 0.1°C per decade the model 

predicted greater than 85 percent algae cover and less than 15 percent coral cover, while control reefs 

had 60 percent algal and 40 percent coral cover. 
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Such scenarios are relatively mild given that most projections suggest that bleaching events of the 

scale of 1998 will be annual events by 205050,107,24. Using the lower range of scenarios, these studies 

indicate that communities and reef on the GBR will trend rapidly toward an algal-dominated state, 
resembling those in large parts of the Caribbean and Persian Gulf where benthic communities are 
now dominated by organisms other than corals57,93. The changes that will occur in the number and 
community composition of other reef organisms are less easily defined but are likely to be equally 
dramatic, due to the high dependency on healthy coral cover. The possibility of rapid evolution of 
thermal tolerance in reef species is unlikely and would have to match the rate of current and future 
climate change to maintain the current status quo (0.2 to 0.6°C per decade)24.

These scenarios are also best-case scenarios given that they do not incorporate the interactive effects 
of other changes such as tropical cyclone intensity, sediment destabilization by drought, larger 
flood events and other factors, and because they do not consider adequately how ocean warming, 
acidification and sea level rise may interact. Currently, work that has explored how temperature and 
acidification interact is sparse and conclusions are surrounded by controversy (McNeil et al.77 versus 
Kleypas et al.66). Understanding these interactions should be a priority. It is also clear that a better 
understanding of the implications of an increasing frequency of disturbance events like cyclones is 
needed. Since extreme events are rare, observational data are sparse to ground-truth models and 
they are more difficult to predict (and for organisms, more difficult to adapt to) than steady continual 
warming or less severe events. 

17.4.2 Factors influencing resilience 

The term resilience has been used widely to describe the overall ability of tropical marine ecosystems 
to recover from disturbances99,23,121,58,86. Resilience is critical for reefs to withstand the shifting and 
increasingly hostile conditions of tropical waters under climate change, and an essential factor in the 
assessment of vulnerability. 

The resilience of reefs is inextricably linked to factors that influence the growth, reproduction and survival 
of key functional groups on coral reefs. The assumption is that well-connected reef systems generally 
take 10 to 20 years to fully re-establish after a massive disturbance. For example, in the southern GBR, in 
a region of high connectivity with undisturbed reefs, a storm reduced coral cover from 80 to 10 percent, 
with consequent decline in abundances of 88 percent of fish species investigated. Both coral cover and 
fish abundance recovered to pre-disturbance levels within 10 years45. 

Recovery is significantly slower on more isolated atolls that are poorly connected to larval pools. 
Studies of reefs in northern waters of Western Australia have shown that isolated reef systems 
recovered more slowly after the 1998 mass coral bleaching disturbance, than mosaic reef systems111. 
Similarly, live coral was reduced by 90 percent on the inner islands of the isolated Seychelles, with 
no apparent depth refuge107. Seven years later, fleshy macroalgal cover had increased seven-fold, 
dominating many of the carbonate reefs. Only one percent of the benthos consisted of habitat-
forming branching and plate corals, while the remaining 6.5 percent of live corals were massive and 
encrusting growth forms that offered limited shelter for reef-associated organisms124. The finding of 
slow coral recovery, high macroalgal abundance and low abundance of grazing herbivores raises 

serious doubt about the potential of remote and isolated reef systems to recover, due to their poor 

connectivity to larval pools, despite few other human-induced stressors124. 
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Even in well-connected reef systems, longer-term trajectories for the composition of reef communities 

is shaped by disturbance history, as the effects of cumulative disturbances are often greater than 

the sum of individual disturbances57. Offshore reefs in the northern GBR have experienced a series 

of serious large-scale disturbances within the last 15 years (bleaching in 1998 and 2002, severe 

A. planci outbreaks in 1988 to 1992, and 1995 to 1998, and category 5 Cyclone Larry in 2005114. 

Such repeated large-scale disturbances destroy brood stock and physical structure of the ecosystem 

at regional scales, severely compromising the ability of this region to recover from climate related 

disturbances in the coming decades. 

More chronic disturbance such as fishing pressure and changes to water quality also greatly affect 

the resilience of reefs. For example, the over-exploitation of fish populations that are threatened 

by a loss of primary habitat due to climate change will clearly hasten the loss of these fishes from 

coral reefs. If fish populations on coral reefs are fished too heavily, then the functions they provide 

(grazing, predation) will dwindle with the effect that reefs may become vulnerable to a community 

shift away from coral and toward macroalgal assemblages. Lessons from other coral reef areas (eg 

Caribbean57) have demonstrated the importance of complexity and diversity in maintaining the ability 

of coral reefs to bounce back from disturbance. The key interactions are likely to be between climate 

change and more local human activities, such as fishing pressure, water quality and coastal land use. 

These elements are critical to societal responses to a rapidly changing climate. Given that projections 

indicate that disturbances are likely to increase in frequency and intensity under even low range 

emission scenarios, the importance of resilience over the coming decades will only increase. While 

there must be rapid action on the core issue of reducing greenhouse gas emissions, managing coral 

reef habitats to increase their resilience to change is vital if we are to give them the best change of 

surviving rapid climate change.

17.4.3 Vulnerability of coral reefs to climate change

Data compiled in the previous sections on the exposure, sensitivity, impacts, adaptive capacity and 

resilience of coral reef habitats confirm the findings from many previous studies. That the presently 

observed extent and rate of climate change, and the associated higher frequencies of extreme 

weather events, constitute a severe threat to the presence and future health of coral reefs40,12,23,50,65,21, 

58,107,52. Here we summarise in a simple conceptual diagram the expected responses of coral reefs to 

the five main climate change factors; temperature, irradiance, acidification, storms and floods (Figure 

17.1). The diagram emphasises that some of the direct effects on reefs are common across the five 

main climate change variables: they all reduce coral cover, structural complexity and available habitat, 

and the number of sensitive species. The effects of acidification and temperature are of most concern, 

whereas changing irradiance is probably of least concern. These direct effects lead to flow-on effects 

on major ecosystem properties, including:

• Shift in balance from net calcification to net erosion.

• More bare substratum available for algae to settle, resulting in a shift from coral to algal 

dominance and presence of algae retarding coral recovery.

• Lower structural complexity leading to reduced habitat and shelter for fish and other coral-

associated organisms.
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• Local extinctions of sensitive, rare and highly specialised species; possibly some global  

extinctions of endemic species that are unable to migrate or compete with other species 

for resources.

• Reduced population sizes leading to reduced reproduction and recruitment, and longer 

recovery times.

• Simpler, ecologically less complex ecosystems, overall reduction in biodiversity.

Figure 17.1 Predicted direct and indirect impacts of the five main climate change variables on coral 
reefs and how this will influence coral reefs in the futurec 

c Through repeated and prolonged impacts, reef communities will adapt to a state of lower sensitivity, however essential 
ecosystem properties such as biodiversity, reef calcification and coral dominance are lost
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Additionally, each climate variable exerts certain specific direct and indirect effects on the ecosystem. 

For example: 

• Ocean acidification reduces precipitation and enhances dissolution of carbonate.

• More frequent drought-breaking floods cause eutrophication, fostering the growth of 

macroalgae, filter feeders and outbreaks of coral-eating crown-of-thorns starfish.

• Higher temperatures accelerate growth in some organisms, however coral cover is reduced as 

bleaching thresholds are exceeded more frequently.

• Elevated sea temperatures reduce fecundity and recruitment in surviving corals.

• Warming leads to expanding or contracting geographic distributions of species that are 

adapted to specific temperature ranges, with unpredictable effects on species interactions.

17.4.4 Thresholds

Given the dependency of coral reef habitats on healthy coral populations, thresholds associated with 

change at the ecosystem level are inevitably similar to those of corals. In this regard, increases in sea 

temperature of more than 1°C will drive an increase in frequency and intensity of mass coral bleaching 

events, if no adaptation or acclimation occurs. Increasing concentrations of CO2 will lead to a decline 

in pH and in carbonate ion to concentrations below 200 micromol per kg, a point at which corals 

will no longer calcify. As discussed above, numerous other changes will occur that will tip the balance 

of coral reef accretion and structure toward that typical of non-carbonate reef ecosystems. Based on 

this reasoning, the threshold for significant change to occur will be reached near 450 to 500 parts 

per million atmospheric CO2 concentration. At this level, tropical seas will be further warmed by 1 

to 2°C towards a temperature where coral mortality from bleaching will be a common event, and 

seawater carbonate saturation will be decreased to below 200 micromol per kg where calcification 

is severely reduced. 

17.4.5 Assessment of spatial patterns of vulnerability to climate change

In order to identify regions in the GBR that are potentially most vulnerable to the effects of climate 

change, we qualitatively assessed the spatial distribution of all major potential environmental and 

biological predictors of vulnerability. West and Salm121 and Salm et al.101 identified the main physical 

and biological factors that contribute to bleaching outcomes, including the physical factors related 

to high temperature exposure, water movement, mixing and irradiance, and biological factors such 

as bleaching history, pre-exposure to low tides and high fish abundances as maintained through a 

network of protected areas. Done et al.21 tested four of these physical and biological factors related to 

bleaching resistance in the GBR, using surveys late in the 2002 bleaching event. They found strong 

support for the effects of local warming, cooling by hydrodynamic mixing (modifying exposure and 

sensitivity), and sensitivity differing between four coral community types. They also found inconsistent 

effects of pre-exposure and relatively weak support for the role of irradiance in determining bleaching 

and mortality. Hoegh-Guldberg50 concluded that the GBR will be more vulnerable in the south than in 

the north, due to greater sea surface temperature increases in the south (approximately 0.5°C versus 

approximately 0.3°C since the late 19th century, respectively; Lough chapter 2). 
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Berkelmans et al.8 found that the spatial distribution of coral bleaching in the GBR in 1998 and 2002 

was best explained by short-term thermal exposure (the 3-day maximum temperature around a 

reef) rather than longer-term median or deviations from the long-term average physical conditions. 

Wooldridge et al.127 demonstrated the importance of water quality and herbivores in determining 

macroalgal abundance and hence the vulnerability and resilience of reefs. Skirving et al.110 confirmed 

through mathematical models the important roles of low wind and currents and cloudless skies in 

inducing bleaching conditions. Many other studies have tested additional aspects of the potential 

contributions of physical and biological factors in enhancing or ameliorating hazard, and justifying 

their inclusion as risk factors. As a first and preliminary approach, a qualitative assessment of the 

distribution patterns in the spatial distribution of the potential risk and resilience factors across the 

GBR regions is compiled in Table 17.4 and in Figures 17.2 and 17.3.

Table 17.4a lists all of the known risk factors that may lead to an increased probability of climate 

impacts. Highest long-term means mostly appear to be located in the southern and central GBR, while 

none of the risk factors had highest values in the far northern and northern regions. For example, in 

the southern GBR alkalinity saturation and coral growth rates are assumed to be lowest while mean 

annual temperature variation and long-term warming trends are highest. Some of the risk factors 

are also assumed to have higher values in the inshore region compared with the offshore region, for 

example, long-term summer temperature averages are generally greater than 1°C warmer inshore 

than offshore (Lough chapter 2). Seasonal water temperature fluctuations are higher inshore due to 

longer water residency times on the continental shelf and distance from cool-water upwelling125,8. 

Corals on inshore reefs are also exposed to more variable irradiance from turbidity, and less swell-

induced flow. They are also significantly darker than their conspecifics in cleaner offshore waters, in 

response to elevated particulate nutrients, nitrate and shading. All these factors may contribute to 

greater exposure to climate change, suggesting a potentially greater risk for inshore areas compared 

with offshore areas, and for the southern region compared with the far northern region of the GBR. 

Table 17.4b lists the factors that are likely to contribute to reef resilience. It confirms the patterns 

seen in Table 17.4a of greater pressure in the southern region than in the far northern region. Again, 

many of the resilience factors have highest values around offshore reefs compared to inshore reefs 

(eg maximum cooling through upwelling and mixing from currents and swell offshore, and steeper 

slopes offshore than inshore). 

This assessment, graphically summarised in Figures 17.2 and 17.3, suggests that at a regional scale, the 

far northern region, and in particular its offshore reefs, may have the most favorable spatial, biological 

and physical conditions within the GBR, supporting their relative greater resilience to climate change. In 

contrast, inshore reefs of the southern and central regions of the GBR appear to have the least favorable 

environmental conditions, exposing them to the greatest probability of long-term damage from climate 

change. However, it is very important to stress that the spatial pattern proposed here is preliminary, 

purely qualitative and conceptual. It will need to be rigorously tested using quantitative information and 

a formal risk mapping approach, to test and verify the apparent spatial patterns in the vulnerability of 

the main GBR regions to climate change. The relevance and relative importance of the different factors 

in protecting coral reefs will vary considerably spatially and temporally. 
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Table 17.4 (a) Risk factors: regional conditions that increase vulnerability to climate change 
impacts on coral reefs in the GBRde (b) Resilience factors: regional conditions that reduce the 
vulnerability to climate change impacts on coral reefs in the GBR 

17.4a Inshore Offshore

Far Northern Fluctuations in water clarity

Macroalgal dominance after coral loss

Northern Moderate fishing effort

Frequent crown-of-thorns starfish outbreaks

Macroalgal dominance after coral loss

Fluctuations in water clarity

Moderate fishing effort

Frequent crown-of-thorns starfish 
outbreaks

Central High cyclone frequency

High sea temperature warming 
(approximately 0.4°C since 1903)

Most frequent crown-of-thorns starfish 
outbreaks

High fishing effort

Macroalgal dominance after coral loss

High exposure to terrestrial runoff

Fluctuations in water clarity 

Reduced species richness

High cyclone frequency

High sea temperature warming 
(approximately 0.4°C since 1903)

Most frequent crown-of-thorns 
starfish outbreaks

High fishing effort

Southern High seasonal temperature amplitude

High sea temperature warming 
(approximately 0.5°C since 1903)

Low alkalinity super-saturation

Low cloud cover

Low calcification

Moderate fishing effort

Macroalgal dominance after coral loss

Low species richness

Fluctuations in water clarity (drying 
catchments, episodic storms that  
increase sediment transport)

High sea temperature warming 
(approximately 0.5 °C since 1903)

Low alkalinity super-saturation

Low cloud cover

Low calcification

High fishing effort

Frequent crown-of-thorns starfish 
outbreaks

Low species richness

d The separation is based on the four GBRMPA Management regions: far northern (north of Lizard Island): 11.3° to  
14.5 °S; northern (Innisfail / Mourilyan Harbour up to Lizard): 14.5° to 17.5 °S; central (north of Mackay up to Innisfail): 
17.5° to 21.0 °S; and southern (south of Mackay): 21° to 24.5 °S. ‘Inshore’ represents the region reaching from the coast 
to 33 percent across the continental shelf (approximately to the outer edge of the lagoon), and ‘offshore’ represents 
from 33 percent across to the outer edge of the continental shelf where oceanic processes dominate.

e Fishing effort estimates are based on the Queensland Department of Primary Industries and Fishing Coastal Habitat 
Resource Information System data and refer to all types of fishing (commercial and recreational) on reef habitats only. 
Estimates do not include netting or trawling effort in inter-reef areas.
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17.4b Inshore Offshore

Far Northern High alkalinity super-saturation

High cloud cover

Low sea temperature warming 
(approximately 0.3°C since 1903)

Low cyclone frequency

Low fishing effort

Few crown-of-thorns starfish outbreaks

Low exposure to terrestrial runoff

High coral species richness

High annual mean temperature tolerance  
in corals

High alkalinity super-saturation

High cloud cover

Low sea temperature warming 
(approximately 0.3°C since 1903)

Low cyclone frequency

Low fishing effort

Few crown-of-thorns starfish 
outbreaks

Low exposure to terrestrial runoff

High coral species richness

High annual mean temperature 
tolerance in corals

Low seasonal temperature amplitude

Cooling through upwelling, mixing 
from currents and swell, shading 
from steep slopes

Conditions less suitable for 
macroalgal growth

Northern Cooling through upwelling, mixing 
from currents and swell, shading 
from steep slopes

Conditions less suitable for 
macroalgal growth

Central Low exposure to terrestrial runoff

Cooling through upwelling, mixing 
from currents and swell, shading 
from steep slopes

Conditions less suitable for 
macroalgal growth

Southern  Low exposure to terrestrial runoff

Cooling through upwelling, mixing 
from currents and swell, shading 
from steep slopes

Poor conditions for macroalgal 
growth
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Figure 17.2 Map of the predicted vulnerability of coral reefs of the GBR to climate changef 

f Based on a qualitative preliminary assessment of the spatial distribution of the main climate and other environmental 
factors that are likely to affect the degree of risk and resilience (see Tables 17.4 a and 17.4 b). Importantly, this assess-
ment is conceptual rather than quantitative, and there are no firm boundaries of regions, hence the shades of risk are 
indicative rather than quantitative
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At within-reef scales, spatial differences in vulnerability appear limited. Windward and leeward sides 

appear to show a similar number of risk factors and resilience factors, and shallow areas have only 

slightly more risk factors compared to deep areas (Table 17.5 and Figure 17.3). However, sheltered 

and poorly flushed lagoons and embayments appear to be most exposed to risk factors, and have 

the lowest resilience factors with regards to bleaching, whereas well-flushed flanks are probably 

best protected against damage from bleaching116. In contrast, well-flushed areas may be the least 

protected against ocean acidification, as locally buffering dissolving calcium carbonate would be 

flushed away and unable to protect calcifying biota20. 

In summary, the spatial distribution of risk factors suggests that long-term vulnerability is greatest in 

inshore regions of the southern and central GBR, and in shallow waters, lagoons or bays. In contrast, 

resilience is highest in offshore reefs of the far northern GBR and on well-flushed flanks (Tables 17.4 

and 17.5). These preliminary predictions were compared against observed bleaching patterns in the 

Table 17.5 (a) Risk factors: local conditions that increase vulnerability to climate change impacts 
within coral reefs (b) Resilience factors: local conditions that reduce vulnerability of climate change 
impacts within coral reefs. 

17.5a Shallow Deep

Front (windward) High irradiance

Fast macroalgal growth (inshore)

Sensitive communities

Slow coral growth, slow recovery

Sensitive communities

Back (leeward) High irradiance Slow coral growth, slow recovery

Sensitive communities

High levels of sedimentation

Lagoon and bays High irradiance

Low flushing – high sea 
temperature heating

Low larval settlement

Slow coral growth, slow recovery

Low flushing, wave mixing – greatest sea 
temperature heating

Low larval settlement

Slow recovery (very slow coral growth)

High levels of sedimentation

Flank High irradiance

17.5b Shallow Deep

Front (windward) Fast growth

Low sedimentation

High wave mixing

Low irradiance

Back (leeward) Resistant communities (inshore) Low irradiance

Poor conditions for macroalgal growth

Lagoon Resistant communities Resistant communities 

Low irradiance

Flank High flushing

Fast growth

Resistant communities 

Low irradiance
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1998 and 2002 events. Arial surveys showed that bleaching was more severe inshore than offshore, 

with 74 versus 21 percent of reefs bleached in 1998, and 72 versus 41 percent in 20028. Offshore 

reefs in the far northern and the southern (Swains complex) regions experienced little bleaching, 

and inshore reefs in the far northern region showed slightly less bleaching than inshore reefs in the 

central and southern regions. Satellite-derived 3-day maximum sea surface temperatures explained 

73 percent of the variation in the occurrence of bleaching between reefs, and the odds of bleaching 

increased 5.7-fold with every degree increase in 3-day maximum temperatures8. Underwater surveys 

showed that bleaching damage was more severe inshore than offshore, and more severe in shallow 

than in deeper waters, and that less bleaching occurred in well-flushed channels than in lagoons and 

ponding back reefs21. It is obvious that a better system understanding and more quantitative data 

need to be considered to test and verify the preliminary predictions made here.

Figure 17.3 Overview of some of the main physical, spatial and biological factors that affect the 
vulnerability of coral reefs to climate change
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17.5 Linkages with other ecosystem components
Although coral reefs represent only 6 percent of the area of the GBR Marine Park, they are vitally 

connected to other GBR habitats including mangroves and salt marshes, seagrass meadows and 

estuaries, as well as pelagic environments15 (Sheaves et al. chapter 19). Reefs act as barriers against 

oceanic waves providing shelter that is critical to mangroves, seagrasses and salt marshes. Loss 

of connectivity, both physically and ecologically, will affect the movement of nutrients, pelagic 

organisms (particularly planktonic larvae and invertebrates), as well as the survival and dispersal 

patterns of eggs, larvae and juveniles of reef species, compromising ecosystem functions. Flow-on 

effects to coral reefs are to be expected as other ecosystem components are deleteriously impacted 

by climate change, and ecosystem diversity and functions decline. 

Pelagic environments (primarily through resident plankton) directly support a wide variety of suspension 

feeding organisms and planktivorous fish on coral reefs. Planktivorous fish are the largest trophic 

category of fishes by weight and number at shallow depths on GBR coral reefs (McKinnon et al. chapter 

6). Similarly, many coral species rely on plankton and suspended particulate material as a primary food 

resource. As primary productivity of plankton communities is affected by changes in sea temperature, 

rainfall patterns, runoff and ocean circulation, the transport and availability of nutrients to reefs will 

decline. This will in turn decrease food quality and quantity for higher trophic levels with a resultant 

decline in abundance and diversity of other species on reefs (Kingsford and Welch chapter 18).

Mangroves and salt marshes, seagrasses and wetlands are a complex connected mosaic of habitats 

that are important nursery and juvenile habitats for many coral reef species. The movement of these 

species result in the transfer of materials between habitats through grazing, predation, and excretion 

(Waycott et al. chapter 8, Lovelock and Ellison chapter 9). Material exchange between mangroves, 

salt marshes and seagrasses and other adjacent habitats are critical for the survival of many reef 

species. Therefore loss of seagrasses or mangroves, or changes in productivity, are likely to affect reef 

species that spend part of their life history in these habitats and may be important members of the 

reef trophic structure. In addition, sediment filtering and trapping, nutrient cycling and substrate 

stabilisation are important functions of these habitats that may be compromised by climate change 

(Waycott et al. chapter 8, Lovelock and Ellison chapter 9). The implications for reefs are that any 

increased delivery of sediment or nutrients to inshore reefs reduces water quality and threatens reef 

resilience and recovery after disturbance. 

17.6 Recommendations

17.6.1 Potential management responses

Concerns about the status and future of coral reefs are increasing. Coral reefs are shaped by 

disturbance regimes, and storms and freshwater floods have exerted major influence on the ecology of 

coral reefs throughout millennia. However, climate change, through the rapid increase in atmospheric 

concentrations of greenhouse gases like carbon dioxide, is changing the rate of disturbance as well 

as changing baseline climate conditions. This in turn is exacerbating human related disturbances 

such as fishing, destructive fishing and water pollution10. The frequency and severity of disturbance 

of coral reefs is unprecedented in modern times, and several global assessments conclude that about  
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27 percent of the world’s reefs have been damaged or destroyed, while a further 50 percent have already 

been severely degraded as a consequence of human activity104,123. Should ocean pH continue to decline 

while temperatures continue to rise as a result of anthropogenic greenhouse gas emissions, then reef 

structure will be lost as carbonate dissolution and coral bleaching continue to increase both in severity 

and frequency. A dramatic loss in reef biodiversity appears inevitable at atmospheric CO2 concentrations 

approaching 500 parts per million. Given that impacts on many other ecosystems also become extreme 

at 450 to 500 parts per million, limiting emissions to below this point is critical for coral reefs. 

There is little doubt that coral reefs of the GBR are particularly vulnerable to climate change. 

Disturbance by climate change, when combined with other existing human stressors, is likely to 

further degrade this valuable ecosystem, and threaten resilience. Effective management strategies 

to reduce the impacts of climate change and promote resilience are essential to ensure the future 

survival of coral reefs. It is important to understand that these management responses are not 

a solution to the problems faced by coral reefs under human-driven climate change. They must 

therefore be part of a strategy that involves stabilising atmospheric CO2 at concentrations less than 

450 to 500 parts per million. Strategies to enhance reef resilience have started to emerge100,127, and are 

briefly summarised here. Unfortunately, no strategy for addressing the effects of ocean acidification 

on coral reefs is presently known. 

To maximise the ability of the GBR to cope with climate change, the impact of other anthropogenic 

stresses must be reduced. The authors recommend the following management strategies should be 

considered as a matter of priority:

• Protection of water quality: Deteriorating water quality from increased runoff of sediments, nutrients 

and agrochemicals from agricultural land is a major anthropogenic threat to inshore coral reefs. 

The Reef Water Quality Protection Plan aims to ‘halt and reverse the decline in the quality of water 

entering the GBR lagoon by 2013’. Continued effective implementation of this plan is considered 

essential to maintain the ecological balance in coral reefs, reduce disturbance from terrestrial 

runoff and the consequences on coral recruitment, algal abundance and frequency of crown-of-

thorns starfish outbreaks30,11. 

• Protection of coastal habitats: The protection of coastal habitats such as mangroves and salt marshes, 

estuaries and seagrass meadows will maintain key functions of these habitats. Functions such 

as sediment filtering and trapping, nutrient cycling and substrate stabilisation are important for 

addressing poor water quality and reducing sediment and nutrient delivery to GBR reefs. Protecting 

coastal habitats will also maintain the connectivity between these habitats and coral reefs, and the 

critical habitat they provide for reef species that spend part of their life cycle in these habitats15.

• Protection of biodiversity: A comprehensive network of adequate and representative marine areas 

exist in the GBR Marine Park. There is now increased biodiversity protection with 33 percent of the 

GBR Marine Park designated as no-take areas, and protection of inter-reef habitats from bottom 

trawling in other areas. This type of protection will play a role in preventing the destabilisation of 

ecological balance and macroalgal proliferation after corals die, and hence assist corals to recover 

more quickly from disturbances. Networks of marine protected areas are generally considered an 

essential strategy to improve reef resilience101, and in the GBR they will play a significant role in 

minimising impacts from the increasing frequency of climate change related massive disturbances.
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Furthermore, some interventionist approaches have been proposed recently to lessen the direct 

impacts of climate change on coral reefs of the GBR. The following management strategies have 

been discussed:

• Shading and mixing: Shading by clouds or steep islands reduces bleaching damage in corals62,83,33. 

Similarly, water turbulence lessens bleaching damage85. Trials have begun with tourism operators 

on the GBR to explore the utility of shading small patches of economically important reefs close 

to tourist pontoons to reduce the amount of damage occurring during mass bleaching episodes. 

Such proposed management intervention may be effective on very small scales, protecting key 

sites that may have economic or other significance, but it is obviously not a solution to remediate 

climate impacts at an ecologically relevant scale. Furthermore, the economic viability of erecting 

structures like shades may become more compromised should cyclone intensities increase.

• Transplantations: Another local scale, coral bleaching specific strategy has been proposed by some 

researchers to seed the southern GBR with potentially more temperature adapted genotypes of 

endosymbiotic dinoflagellates and corals from the northern GBR. As numerous environmental 

conditions differ between north and south (eg naturally lower aragonite saturation, lower winter 

temperatures, different types of predators, more vigorous macroalgae), the success and ecological 

implications of such transplantations are unknown. Such experiments have limited application 

while the implications for the wider ecosystem are not reliably understood or addressed. Before 

any trails of this nature can be conducted, comprehensive research is needed to predict the 

likelihood of success and to avoid potential disruptions in ecosystem functions such as the spread 

of coral disease. 

Alleviating the rate and magnitude of climate change pressure on species and habitats of the GBR is 

an essential strategy. As few obvious regional-scale strategies exist, it is an ecological and economic 

imperative for the world population to substantially cut greenhouse gas emissions, and slow the 

predicted rate and extent of change in the global climate. This requires the rapid adoption and 

implementation of effective greenhouse gas mitigation strategies.

17.6.2 Further research

Research is urgently needed to improve the ability to predict future climate change impacts on coral 

reefs, and integrate both natural and climate change-related stressors in future models. The following 

list represents top research priorities to improve our ability to assess vulnerability and predict change. 

A better understanding of these questions might also facilitate the development of new management 

strategies, and prioritisation of potential management options: 

• Understanding adaptation: Mechanisms and time frames of acclimation and adaptation at all 

levels of biological organisation, from molecular to ecosystem level. This knowledge is essential 

to support our capacity to predict ecosystem changes in response to climate change. 

• Identifying refuges: Mapping the main refuges from climate change for the next 30 years. Data 

and models are needed to test and quantify the proposed schematic latitudinal, cross-shelf and 

within-reef gradients in exposure and potential impacts. These refuges will be important for 

maintaining and supporting reef resilience, and must be given the highest level of management 

protection.



548 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part III: Habitats

• Climate change stress interactions: Quantify the interactive and synergistic effects of ocean 

warming, aragonite saturation and increased storm frequency on ecosystem calcification budgets 

for the different regions of the GBR.

• Climate change and other stressors: Quantify the specific interactions and synergies between 

climate related ecosystem disturbance and water quality. Quantify the specific interactions 

between climate related ecosystem disturbance and fishing pressure. How do poor water quality 

and fishing pressure affect reef resilience?

• Life history impacts: Investigate the influence of higher water temperatures on the life history of 

planktonic life stages and metamorphosis in key reef organism groups.

• Transplantation: Investigate the likely consequences of seeding high-temperature adapted coral 

gametes and zooxanthellae from the northern part of the GBR on reefs in regions further south.

• Ocean acidification and calcification: Quantify the specific effects of changing aragonite saturation 

for benthic and pelagic calcifying organisms and explore adaptive mechanisms to continue 

calcification at lower carbonate supersaturation.

• Extinction risk: What are realistic rates of local and global species extinctions in response to climate 

change, and what are the properties of marine species that are most at risk of extinction? What 

would species extinctions mean for the GBR ecosystem? 

• Ecosystem stability: The role of species redundancy in maintaining ecosystem stability and the 

linkages between species diversity and specific coral reef functions.
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