333 research outputs found

    Evaporation of (quantum) black holes and energy conservation

    Get PDF
    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. The non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the back-scattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.Comment: 16 pages, 2 figure

    The mechanism why colliders could create quasi-stable black holes

    Get PDF
    It has been postulated that black holes could be created in particle collisions within the range of the available energies for nowadays colliders (LHC). In this paper we analyze the evaporation of a type of black holes that are candidates for this specific behaviour, namely, small black holes on a brane in a world with large extra-dimensions. We examine their evolution under the assumption that energy conservation is satisfied during the process and compare it with the standard evaporation approach. We claim that, rather than undergoing a quick total evaporation, black holes become quasi-stable. We comment on the (absence of) implications for safety of this result. We also discuss how the presence of black holes together with the correctness of the energy conservation approach might be experimentally verified.Comment: 16 pages, 3 figure

    A silence black hole: Hawking radiation at the Hagedorn temperature

    Full text link
    We compute semi-classically the Hawking emission for different types of black hole in type II string theory. In particular we analyze the thermal transition between NS5 branes and Little String Theory, finding compelling evidence for information recovering. We find that once the near horizon limit is taken the emission of a full family of models is exactly thermal even if back-reaction is taken into account. Consequently these theories are non-unitary and can not convey any information about the black hole internal states. It is argue that this behaviour matches the string theory expectations. We suggest a plausible reason for the vanishing of the jet-quenching parameter in such theories.Comment: 18 pages, harvma

    Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors

    Full text link
    We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets. We focus on the D3-D7 construction and consider the finite temperature, finite quark chemical potential case where there is a charged black hole in the dual solution. Discussed physical outputs of the model include its thermodynamics (with susceptibilities) and general hydrodynamic properties.Comment: Lecture presented at the Workshop "AdS/CFT and Novel Approaches to Hadron and Heavy Ion Physics", Kavli Institute of Theoretical Physics (KITPC), Beijing, China, 13 October 2010. Review article to be published in Communications in Theoretical Physics. 27 pages, 2 figure

    The cord blood insulin and mitochondrial DNA content related methylome

    Get PDF
    Mitochondrial dysfunction seems to play a key role in the etiology of insulin resistance. At birth, a link has already been established between mitochondrial DNA (mtDNA) content and insulin levels in cord blood. In this study, we explore shared epigenetic mechanisms of the association between mtDNA content and insulin levels, supporting the developmental origins of this link. First, the association between cord blood insulin and mtDNA content in 882 newborns of the ENVIRONAGE birth cohort was assessed. Cord blood mtDNA content was established via qPCR, while cord blood levels of insulin were determined using electrochemiluminescence immunoassays. Then the cord blood DNA methylome and transcriptome were determined in 179 newborns, using the human 450K methylation Illumina and Agilent Whole Human Genome 8 × 60 K microarrays, respectively. Subsequently, we performed an epigenome-wide association study (EWAS) adjusted for different maternal and neonatal variables. Afterward, we focused on the 20 strongest associations based on p-values to assign transcriptomic correlates and allocate corresponding pathways employing the R packages ReactomePA and RDAVIDWebService. On the regional level, we examined differential methylation using the DMRcate and Bumphunter packages in R. Cord blood mtDNA content and insulin were significantly correlated (r = 0.074, p = 0.028), still showing a trend after additional adjustment for maternal and neonatal variables (p = 0.062). We found an overlap of 33 pathways which were in common between the association with cord blood mtDNA content and insulin levels, including pathways of neurodevelopment, histone modification, cytochromes P450 (CYP)-metabolism, and biological aging. We further identified a DMR annotated to Repulsive Guidance Molecule BMP Co-Receptor A (RGMA) linked to cord blood insulin as well as mtDNA content. Metabolic variation in early life represented by neonatal insulin levels and mtDNA content might reflect or accommodate alterations in neurodevelopment, histone modification, CYP-metabolism, and aging, indicating etiological origins in epigenetic programming. Variation in metabolic hormones at birth, reflected by molecular changes, might via these alterations predispose children to metabolic diseases later in life. The results of this study may provide important markers for following targeted studies

    Sequencing identifies a distinct signature of circulating microRNAs in early radiographic knee osteoarthritis

    Get PDF
    OBJECTIVE: MicroRNAs act locally and systemically to impact osteoarthritis (OA) pathophysiology, but comprehensive profiling of the circulating miRNome in early vs late stages of OA has yet to be conducted. Sequencing has emerged as the preferred method for microRNA profiling since it offers high sensitivity and specificity. Our objective is to sequence the miRNome in plasma from 91 patients with early [Kellgren-Lawrence (KL) grade 0 or 1 (n = 41)] or late [KL grade 3 or 4 (n = 50)] symptomatic radiographic knee OA to identify unique microRNA signatures in each disease state. DESIGN: MicroRNA libraries were prepared using the QIAseq miRNA Library Kit and sequenced on the Illumina NextSeq 550.Counts were produced for microRNAs captured in miRBase and for novel microRNAs. Statistical, bioinformatics, and computational biology approaches were used to refine and interpret the final list of microRNAs. RESULTS: From 215 differentially expressed microRNAs (FDR \u3c 0.01), 97 microRNAs showed an increase or decrease in expression in ≥85% of samples in the early OA group as compared to the median expression in the late OA group. Increasing this threshold to ≥95%, seven microRNAs were identified: hsa-miR-335-3p, hsa-miR-199a-5p, hsa-miR-671-3p, hsa-miR-1260b, hsa-miR-191-3p, hsa-miR-335-5p, and hsa-miR-543. Four novel microRNAs were present in ≥50% of early OA samples and had 27 predicted gene targets in common with the prioritized set of predicted gene targets from the 97 microRNAs, suggesting common underlying mechanisms. CONCLUSION: Applying sequencing to well-characterized patient cohorts produced unbiased profiling of the circulating miRNome and identified a unique panel of 11 microRNAs in early radiographic knee OA

    D3-D7 Quark-Gluon Plasmas at Finite Baryon Density

    Get PDF
    We present the string dual to SU(Nc) N=4 SYM, coupled to Nf massless fundamental flavors, at finite temperature and baryon density. The solution is determined by two dimensionless parameters, both depending on the 't Hooft coupling λh\lambda_h at the scale set by the temperature T: ϵhλhNf/Nc\epsilon_h\sim\lambda_h Nf/Nc, weighting the backreaction of the flavor fields and δ~λh1/2nb/(NfT3)\tilde\delta\sim\lambda_h^{-1/2}nb/(Nf T^3), where nbnb is the baryon density. For small values of these two parameters the solution is given analytically up to second order. We study the thermodynamics of the system in the canonical and grand-canonical ensembles. We then analyze the energy loss of partons moving through the plasma, computing the jet quenching parameter and studying its dependence on the baryon density. Finally, we analyze certain "optical" properties of the plasma. The whole setup is generalized to non abelian strongly coupled plasmas engineered on D3-D7 systems with D3-branes placed at the tip of a generic singular Calabi-Yau cone. In all the cases, fundamental matter fields are introduced by means of homogeneously smeared D7-branes and the flavor symmetry group is thus a product of abelian factors.Comment: 27 pages; v2: 29 pages, 1 (new) figure, new section 4.4 on optical properties, references, comments added; v3: eq. (3.19), comments and a reference adde

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Screening effects on meson masses from holography

    Full text link
    We study the spectra of scalar and vector mesons in four dimensional strongly coupled SQCD-like theories in the Veneziano limit. The gauge theories describe the low energy dynamics of intersecting D3 and D7-branes on the singular and deformed conifold and their strong coupling regime can be explored by means of dual fully backreacted supergravity backgrounds. The mesons we focus on are dual to fluctuations of the worldvolume gauge field on a probe D7-brane in these backgrounds. As we will comment in detail, the general occurrence of various UV pathologies in the D3-D7 set-ups under study, forces us to adapt the standard holographic recipes to theories with intrinsic cutoffs. Just as for QED, the low energy spectra for mesonic-like bound states will be consistent and largely independent of the UV cutoffs. We will study in detail how these spectra vary with the number of the fundamental sea flavors and their mass.Comment: 30 pages + appendices, 10 figures; v2: subsection 3.3.3 and some comments adde
    corecore