1,839 research outputs found

    Charmonium dynamics in heavy ion collisions

    Full text link
    Applying the HSD transport approach to charmonium dynamics within the 'hadronic comover model' and the 'QGP melting scenario', we show that the suppression pattern seen at RHIC cannot be explained by the interaction with baryons, comoving mesons and/or by color screening mechanism. The interaction with hadrons in the late stages of the collision (when the energy density falls below the critical) gives a sizable contribution to the suppression. On the other hand, it does not account for the observed additional charmonium dissociation and its dependence on rapidity. Together with the failure of the hadron-string models to reproduce high v2 of open charm mesons, this suggests strong pre-hadronic interaction of c-cbar with the medium at high energy densities.Comment: 6 pages, 2 figures, talk presented at the international conference on "Strangeness in Quark Matter", 24-29 June 2007, Levoca, Slovaki

    Module production of the one-arm AFP 3D pixel tracker

    Full text link
    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.Comment: PIXEL 2016 proceedings; Submitted to JINS

    Integrable mixing of A_{n-1} type vertex models

    Full text link
    Given a family of monodromy matrices {T_u; u=0,1,...,K-1} corresponding to integrable anisotropic vertex models of A_{(n_u)-1}-type, we build up a related mixed vertex model by means of glueing the lattices on which they are defined, in such a way that integrability property is preserved. Algebraically, the glueing process is implemented through one dimensional representations of rectangular matrix algebras A(R_p,R_q), namely, the `glueing matrices' zeta_u. Here R_n indicates the Yang-Baxter operator associated to the standard Hopf algebra deformation of the simple Lie algebra A_{n-1}. We show there exists a pseudovacuum subspace with respect to which algebraic Bethe ansatz can be applied. For each pseudovacuum vector we have a set of nested Bethe ansatz equations identical to the ones corresponding to an A_{m-1} quasi-periodic model, with m equal to the minimal range of involved glueing matrices.Comment: REVTeX 28 pages. Here we complete the proof of integrability for mixed vertex models as defined in the first versio

    The nested SU(N) off-shell Bethe ansatz and exact form factors

    Get PDF
    The form factor equations are solved for an SU(N) invariant S-matrix under the assumption that the anti-particle is identified with the bound state of N-1 particles. The solution is obtained explicitly in terms of the nested off-shell Bethe ansatz where the contribution from each level is written in terms of multiple contour integrals.Comment: This work is dedicated to the 75th anniversary of H. Bethe's foundational work on the Heisenberg chai

    Quantization of Lie-Poisson structures by peripheric chains

    Full text link
    The quantization properties of composite peripheric twists are studied. Peripheric chains of extended twists are constructed for U(sl(N)) in order to obtain composite twists with sufficiently large carrier subalgebras. It is proved that the peripheric chains can be enlarged with additional Reshetikhin and Jordanian factors. This provides the possibility to construct new solutions to Drinfeld equations and, thus, to quantize new sets of Lie-Poisson structures. When the Jordanian additional factors are used the carrier algebras of the enlarged peripheric chains are transformed into algebras of motion of the form G_{JB}^{P}={G}_{H}\vdash {G}_{P}. The factor algebra G_{H} is a direct sum of Borel and contracted Borel subalgebras of lower dimensions. The corresponding omega--form is a coboundary. The enlarged peripheric chains F_{JB}^{P} represent the twists that contain operators external with respect to the Lie-Poisson structure. The properties of new twists are illustrated by quantizing r-matrices for the algebras U(sl(3)), U(sl(4)) and U(sl(7)).Comment: 24 pages, LaTe

    Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains

    Full text link
    The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The Lax operator in terms of fermion operators and the quantum R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.Comment: 10 pages, no figur

    Mobile ad hoc network testbed using mobile robot technology

    Get PDF
    MANET (Mobile Ad Hoc Network) researchers have shown increased interest in using mobile robot technology for their testbed platforms. Thus, the main motivation of this paper is to review various robot-based MANET testbeds that have been developed in previously reported research. Additionally, suggestions to heighten mobility mechanisms by using mobile robots to be more practical, easy and inexpensive are also included in this paper, as we unveils ToMRobot, a low-cost MANET robot created from an ordinary remote control car that is capable of performing a real system MANET testbed with the addition of only a few low-cost electronic components. Despite greatly reduced costs, the ToMRobot does not sacrifice any of the necessary MANET basic structures and will still be easily customizable and upgradeable through the use of open hardware technology like Cubieboard2 and Arduino, as its robot controller. This paper will also include guidelines to enable technically limited MANET researchers to design and develop the ToMRobot. It is hoped that this paper achieves its two pronged objectives namely (i) to facilitate other MANET researchers by providing them with a source of reference that eases their decision making for selecting the best and most suitable MANET mobile robots for real mobility in their MANET testbeds (ii) to provide MANET researchers with a prospect of building their own MANET robots that can be applied in their own MANET testbed in the future

    Direct observation of transverse and vortex metastable magnetic domains in cylindrical nanowires

    Get PDF
    We present experimental evidence of transverse magnetic domains, previously observed only in nanostrips, in CoNi cylindrical nanowires with designed crystal symmetry and tailored magnetic anisotropy. The transverse domains are found together with more conventional vortex domains along the same cylindrical nanowire, denoting a bistable system with similar energies. The surface and the inner magnetization distribution in both types of domains are analyzed by photoemission electron microscopy with x-ray magnetic circular dichroism contrast, and hysteresis loop in individual nanowires are measured by magneto-optical Kerr effect. These experimental data are understood and compared with complementary micromagnetic simulations

    Domain Wall Propagation and Pinning Induced by Current Pulses in Cylindrical Modulated Nanowires

    Full text link
    The future developments of three-dimensional magnetic nanotechnology require the control of domain wall dynamics by means of current pulses. While this has been extensively studied in planar magnetic strips (planar nanowires), few reports exist in cylindrical geometry, where Bloch point domain walls are expected to have intriguing properties. Here we report this investigation in cylindrical magnetic Ni nanowires with geometrical notches. Experimental work based on synchrotron X-ray magnetic circular dichroism (XMCD) combined with photoemission electron microscopy (PEEM) indicates that large current densities induce domain wall nucleation while smaller currents move domain walls preferably against the current direction. In the region where no pinning centers are present we found domain wall velocity of about 1 km/s. The domain wall motion along current was also detected in the vicinity of the notch region. Pinning of domain walls has been observed not only at geometrical constrictions but also outside of them. Thermal modelling indicates that large current densities temporarily raise the temperature in the nanowire above the Curie temperature leading to nucleation of domain walls during the system cooling. Micromagnetic modelling with spin-torque effect shows that for intermediate current densities Bloch point domain walls with chirality parallel to the Oersted field propagate antiparallel to the current direction. In other cases, domain walls can be bounced from the notches and/or get pinned outside their positions. We thus find that current is not only responsible for the domain wall propagation but is also a source of pinning due to the Oersted field action

    Scalar potential effect in an integrable Kondo model

    Get PDF
    To study the impurity potential effect to the Kondo problem in a Luttinger liquid, we propose an integrable model of two interacting half-chains coupled with a single magnetic impurity ferromagnetically. It is shown that the scalar potential effectively reconciles the spin dynamics at low temperatures. Generally, there is a competition between the Kondo coupling JJ and the impurity potential VV. When the ferromagnetic Kondo coupling dominates over the impurity potential (V<SJV<|SJ|), the Furusaki-Nagaosa many-body singlet can be perfectly realized. However, when the impurity potential dominates over the Kondo coupling (VSJV\geq |SJ|), the fixed point predicted by Furusaki and Nagaosa is unstable and the system must flow to a weak coupling fixed point. It is also found that the effective moment of the impurity measured from the susceptibility is considerably enlarged by the impurity potential. In addition, some quantum phase transitions driven by the impurity potential are found and the anomaly residual entropy is discussed.Comment: volume enlarged, some new references are adde
    corecore