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To study the impurity potential effect to the Kondo problem in a Luttinger liquid, we propose an integrable
model of two interacting half-chains coupled with a single magnetic impurity ferromagnetically. It is shown
that the scalar potential effectively reconciles the spin dynamics at low temperatures. Generally, there is a
competition between the Kondo couplidgand the impurity potentiaV. When the ferromagnetic Kondo
coupling dominates over the impurity potentid<|SJ), the Furusaki-Nagaosa many-body singlet can be
perfectly realized. However, when the impurity potential dominates over the Kondo coupliaS(J), the
fixed point predicted by Furusaki and Nagaosa is unstable and the system must flow to a weak-coupling fixed
point. It is also found that the effective moment of the impurity measured from the susceptibility is consider-
ably enlarged by the impurity potential. In addition, some quantum phase transitions driven by the impurity
potential are found and the anomaly residual entropy is discuSed63-1829)00409-9

[. INTRODUCTION ture to describe such a many-body singlet. At first, one con-
duction electron will be bounded on the impurity site and
With the development of the nanofabrication techniquesorms a spin-1 composite with the impurity moméspin-1/
for quantum wires and the prediction of edge states in th®). However, the other electrons on the two sites next to the
quantum Hall effect, the interest in one-dimensiofHD) impurity will screen this composite due to the antiferromag-
quantum systems has been renewed in recent y8amsfact,  netic exchange induced by the correlation between the local-
much of the interest in 1D quantum systems is due to Anderized electron and the electrons near the impurity, and there-
son’s observatiohthat the normal-state properties of the fore leave a spin singlet in the ground state. Moreover, they
quasi-2D highT. superconductors are strikingly different showed that the excess specific heat and Pauli susceptibility
from all known metals and can not be reconciled with Lan-due to the Kondo impurity show an anomalous power law on
dau’s Fermi-liquid theory but are more similar to propertiesthe temperature, a typical non-Fermi-liquid behavior. The
of 1D metals. On the other hand, the impurity problem hasoundary conformal field theory has allowed the classifica-
been a current interest in the field of condensed-matter physion of all possibilities of critical behavior for a Luttinger
ics. A well-known example is the Kondo problem, which hasliquid coupled to a Kondo impurify(without impurity po-
been a strong challenge to traditional perturbation theory antentia). It turns out there are only two possibilities, a local
provided a possible “laboratory” to search for the non- Fermi liquid with standard low-temperature thermodynam-
Fermi-liquid behavior. The local perturbation problem to aics, or a non-Fermi-liquid with the anomalous scaling ob-
1D Fermi system has been the subject of intensive theoreticakrved by Furusaki and Nagaosa. We remark that there are
investigation in recent years, both for its interesting anomastill disputed®*on this problem and the situation is not very
lies with respect to that of a higher-dimensional system, andlear yet.
its relevance to a variety of physical situations such as the The impurity potential effect for the Kondo problem in
transport behavior of quantum wifes® and the tunneling 3D metals has been well understood. A weak impurity po-
through a constriction in the quantum Hall regifh@he tential only renormalizes the Kondo couplidgby a factor
Kondo problem in a Luttinger liquid was considered by Leecog &, (dy is the phase shift of the scatterjigut does not
and Toner. Employing the perturbative renormalization- affect the fixed point of the systeth!® However, the mag-
group method they found the power-law dependence of thaetic impurity embedded in a 1D correlated electron system
Kondo temperaturd, on the exchange coupling constant with scalar impurity potential in addition to the Kondo cou-
with strong enough correlation among the conduction elecpling has been, so far, rarely studi®d> As pointed out by
trons. Subsequently, a “poor man’s” scaling treatment onKane and Fishet,the impurity potential has a significant
this problem was performed by Furusaki and Nag&osa. effect in a Luttinger liquid. With a repulsive interaction
interesting conjecture was proposed in their paper, whiclamong the conduction electrons, it will be scaled to infinity
states that even a ferromagnetic Kondo coupling may induceat low energy scales and thus drives the system into two
Kondo screening at low temperatures. This strong-couplinglisconnected half-chains. This observation has also been
fixed point describes a many-body singlet formed by the imsupported by the numerical studies of the finite-size
purity and the conduction electrons. They gave a simple picspectrumt® Such an effect is obviously detrimental to the
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formation of the Furusaki-Nagaosa singlet, since the impuparent impurity in a whole chatfor a half chain interacting
rity potential prevents the conduction electrons from occupywith a boundary impurity? These models are disadvanta-
ing the impurity site. In fact, there must be a competitiongeous to show the two-channel Kondo physics and cannot
between the Kondo coupling and the scalar potential. capture all essentials of the Kondo problem in a Luttinger
When J is dominant overV, the Furusaki-Nagaosa strong- liquid. A good starting point is the following Hamiltonian,
coupling fixed point should be stable, otherwise the systemvhich describes a magnetic impurity in a Hubbard chain:
may flow to other fixed points. Since the impurity cuts the

whole chain into two pieces, the Kondo problem in a Lut- N N

tinger liquid is effectively a two-channel orté® Even with- H=-t 2 [CJ oCj+10Thc]+U E nj ;|

out the scalar potential, the Furusaki-Nagaosa composite also =

prevents other electrons from occupying the impurity site +Jay- S+V(ng;+ng,), )

and thus behaves as an open boundary.

Attempting to show how the impurity potential behaveswhereJ andV are the Kondo coupling constant and the im-
for a magnetic impurity coupled ferromagnetically with a purity potential, respectivelyy; is the spin operator of the
one-dimensional host metal and how the Furusaki-Nagaoszonduction electrons on sijeandS is the spin operator of
conjecture is realized in a concrete system, we introduce athe impurity. However, the above Hamiltonian is not exactly
integrable model of two half-chains coupled with a magneticsolvable and therefore cannot provide satisfactory informa-
impurity. We note that a few integrable impurity models tion. Instead of studying Eq1), we consider the following
have been introduced earlier which describe either a trangelated Hamiltonian:

f ac+ U(x) Jc, U(x) 5 J’O act (%) ﬂCf,g(X)d
0 ox X+0'=T'l L oX ox X

; > fOLc‘quax)cb (DX)Ca,01(X)Co, o (DX)AX+T 2 >, €1 (0)Ca,1(0) 7,1+ S

* o, o' a== g, o’

+V > ¢l ,(0)cy ,(0), @)

a=

I+

where a,b=* denote the right and left haIf—chams channel Kondo model with a boundary impurity. The Hamil-
(Ca,0) are the creatiofannihilation) operators of the conduc- tonian (2) can be written in first quantization form as

tion electrons;J<0 (ferromagnetit is the Kondo coupling

constant;V is the scalar potential induced by the impurity;

c>0 is the interaction constant of the conduction electrons; N g2 N

L is the length of a half-chain which will be put to infinity in H=-2> —+c> (Pf—P5)d(xj—x)

the thermodynamic limitr is the Pauli matrix, an® is the J=1oxp i

moment of the impurity with spis. The interacting term in N

the Hamiltonian contains &-function-type repulsion of the +Z (I7j-S+V)8(x;), (4

electrons in the same half-chain, andSé+y)-type spin

exchange between electrons in different half-chains. For the

electrons near the impurity, the latter is short ranged and has

a clear physical meaning since both the Kondo coupling anévhere N is the number of electron®?}; and P are the

the correlations in the bulk assist such an exchange effect. lghannel-channel and spin-spin exchange operators respec-
fact, as predicted by the boundary conformal field théBry, tively; the coordinates of the electrons are constrained to the
there is indeed a quasi-long-range ferromagnetic correlatiomterval —L<x;<0. Without the impurity, the Hamiltonian

between the electrons on sitesand —n [Hamiltonian(1)], is just that of the two-band model considered by
) Schlottmanrf?
(op-on)~(2n)77%, ©) The structure of the present paper is the following. In the

where the exponent§ varies from 1 to 4, which can be Subsequent section, we derive the integrability condition of
derived from the boundary conformal field thedhfFor the  the present model. The Bethe ansatz equations for the inte-
electrons far away from the impurity, the spin-exchange ingrable case will be given in considerable detail. In Sec. Ill,
teraction is somewhat artificial but is irrelevant for the im- we derive the thermodynamic Bethe ansatz equations based
purity behavior. Such an irrelevant term is conventionallyon the string hypothesis. The boundary bound states and the
introduced in the multichannel Kondo probl&hio ensure residual entropy will be discussed in Sec. IV. In Sec. V, we
the model to be integrable. By reflecting the coordinates obtudy the low-temperature thermodynamics of the impurity.
the right half-chain, the model is readily reduced to a two-Concluding remarks will be given in Sec. VI.
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[l. BETHE ANSATZ Similarly, for x=0, the §(x) term must be canceled in Eq.

It is well known that without the impurity, the Hamil- (8). This gives

tonian (3) is exactly solvablé? By including the impurity, .
any electron impinging on the impurity will be completely R(K)= Aiz 2!k_(JT'S+V) _ (11)
reflected and suffer a reflection matii . The waves are A, 2ik+(J7-St+V)

therefore reflected at either end as

The self-consistent condition fér.. constrains the value &f
ikix

ekiX— —e kX r2IkiL oy by the following eigenvalue problem:

e = R(kje ", x~0. (5 R(K)A, =e 2KLA (12)
L_ritrnusaﬁori]ﬁigj;r ;T:tetw I(@)_pl? rti;:Iet(;: a;e.ﬁr':':ler;a?;e (t_\/}/(o W&YEor the N-particle caseR;(k;) must satisfy the reflection
— Ky |): i b equation (6). It is known that the bulk Hamiltonian is

20\ integrablé? and that the two-body scattering matrix of the
. (Ky Ko )= (Ko ke )= (Ko, — kg, D= (= Ky Kz, ]) conduction electrons takes the form
—(—kg,—ka,|), S (k) kj— ki +icP k—k —icP§ 3
(k= k)= ———— —,
. (kg K, [) = Ky =K, )= (kg Ky )= (— kg, —ky. ) o kj—kitic  ki—k—ic
—(—kq,—kz,]), and obviously satisfies the Yang-Baxter equation Substi-

) tuting §;; of Eq. (13) andR(k) of Eg. (11) into Eq. (6), we
wher_e the symbq| de_notes the open bounda_ry. Since thereadily obtain the integrable condition of the present model.
physical process is unique, the following equation must holdj; reads

S1a(Ky, k) R1(Kq) Sio(kq, —K2)Ra(Kz)

=Ry(k2)Sya(ky, —kp)Ry(K1) Si(Ky ,kp).  (6)

Above S,, is the scattering matrix between the two electrons
This is just the reflection equatidA.For the multiparticle
case, as long as the scattering matrix is factorizable or the

J=—2c. (14)

The reflection matrix11) in the integrable case can be re-
written as

kj+icp—icr-Sk—ic(p+1)—icr-S

two-body scattering matrix satisfies the Yang-Baxter =
relatior?* RIG)= T icp+ics k-ic(prD—ics * 1Y
Sia(Kq,K5)Si3(Kq,K3) Sya( ks Ka) wherep=V/2c. Notice hereR(k;) is an operator which re-
veals the spin-exchange process at the impurity (bioeind-
= Sze(Kz,k3) Sya(Ka,Ka) Sia(ky Ka), 7 ary). For anN-particle system, suppose the wave function

Eq. (6) is the only constraint to the integrability of an initially has an amplitude/,. When thejth particle moves
open boundary systefd.Below we derive the integrable across another particle, it gets @matrix S; (kj—k;). At the
condition of the present model. right boundary, it is completely reflected back and suffers a
Since the reflection process is only a one-electron effecfactor R(k;). Then it begins to move toward the left bound-
it is convenient to consider the single-particle eigenstate. Thary- When it reaches the left boundary, it will be kicked back

Schralinger equation for this case reads and receives a factor expk2). Finally it arrives at the initial
site and finishes a periodic of motion. Therefore, we have the
*W () following equation:

e +(J7-S+V)(X)¥(X)=EW¥(X). (8)
X - -

' . Sjj_l"'Sj15j+1'"Sﬁ_lsﬂﬂ“'sﬁ\jR(kj)
We make the following ansatz for the wave functidr{x): ik Lea B
, A X e MitSN - - §jj+1¢0= Yo, (16)

V(x)=[A e"+A_e ™]g(—-x)o(x+L), (9
] ) ] or more neatly

where 6(x) is the step function which takes the value of
unity for x=0, and 0 forx<<0. For —L<x<0, we easily -

— ot + + +

find that the eigenvalu€& takes the value?. Since the Sjj-1t S8 S-Sy SnR(kg)
boundary contains an impurity, we use the open-string XSS o= Kby, 17
boundary condition, which has been used in a similar . !

problem?” to solve our model. That means an irrelevant lo-yhere Sﬁ=Sj|(kji k). Equation(17) is just the reflection

cal counter term¥;[ 6" (xj) — &' (x;+L)] is included in the  yersion of Yang's eigenvalue problethlts solution gives

original Hamiltonian. Fox=—L, we obtain the Bethe ansatz equation. We note that the degrees of free-
A dom of the spin sector and those of the channel sector are
It g2ikL (10) completely separated. The scattering matriggsan be ex-

A- pressed as
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Si=Si®Si*, Sk Ki—ic(S—p) v 1o Kj— Ao +i(c/2)
o (18) s VT K Hic(S—p)rst am1 Kj—rh,—i(c/2)’
_i,c:kjik,—lcP“ (27)
il kixk—ic ’ . ,
N tic(S+p+1/2) A, +ic(S—p—1/2)
ki=k+icP§ )\a—ic(S+ p+1/2) \,—ic(S—p—1/2)
S+ S_—.
T krkitic ><H ] Aemrhiticer2)
Therefore, the eigenvalue problgit7) is equivalent to “ir=x N rkj—i(cl2)
M .
- ~ st , Ay,—Thgtic
5SS - S5 S - SNCR(K)) — Ja BT (28)
s 3 =+ B#a )\ I’)\B_IC
X SN Sjj'+1'ﬁo:es(kj)¢//0: (19 o
Similarly, we have
0SS S S SIS - 5 M o/
“(k)= T kj—rx,~i(cl2) (29)
=ec(kj) ¥, (20 S UITLL M KTy, e
with N W
H X, rkj+i(cl2) B H Xy~ TXxsTicC
Vo= 50 us,  edkleyk)=e 2kL, (D) S Xy TKFI(C2) et iy Xy~ TXs—IC
(30
The above eigenvalue problems are very similar to those of
other integrable modefS~*"**Here we introduce a slightly BY using Eq.(21), we obtain
different method, which is more transparéhtDefine i, el
=(S:%,---S7°) 3. Equation(19) can be rewritten as e2ikiL= ki—ic(S—p)
nmiemn s T kj+ic(S—p)r==
se S+ S, St S °R(k; . M .
11 i +1 SRk y ﬂ k,-—r)\a+|(c/2)ﬁ kj—rx,—i(cl2)
X j_N’s' . Sl_Jfl ]_]fl . 'Sj_l’slﬂOEijO:eS(kj)wO' a=1 kj_r)\a_i(C/Z)y=1 k]_rX7+|(C/2) ‘
(22) (31

For convenience, we introduce an auxiliary spacand de-
fine

UK =S5 °S1% S5, S) %1 - SKRR(K IS - S5
XS5+ Sy%8,°, (23)
with k. =k. Obviously,S ;*(k;)=P3; and
U (K 2k +2ic 24
tr, U j)—2|(j—+ic i (24
Since S ® satisfies the Yang-Baxter relation
S, 7(k=K")S; (k= k) S, (K" +kj)
=S,5(K +k)S5(k+k))S,_ S (k—K), (25

from Eqg. (6) we can easily show thdt (q) satisfies the
reflection equation

S_(k—k")U (K)S*(k+k U (k")

=U(K)S P(k+k)HU(K)S, S(k=K). (26)
Therefore, the eigenvalue problerf22) is reduced to
Sklyanin's eigenvalue problefi. Following the standard

method, we obtain

The energy spectrum of E@4) is uniquely determined by
the Bethe ansatz equatiofBAE’s) (28), (30), and(31), with
the eigenvalue of Eq4) as

N

E=> K (32)
=1

wherek;, A, , andy, are the rapidities of the charge, spin,
and channeftwo half-chaing, respectivelyM is the number
of down spins, and is the number of the electrons in the
left half-chain. From the Bethe ansatz equations we can read
off that the impurity spin does not behave as its real value
but as two “images” or effective spin§+p+1/2 andS
—p—1/2. Since there is no constraint to the valueppfve
shall call the two effective spins ghost spins. Notice that the
mean value of the two ghost spins is s8ll

IIl. THERMODYNAMIC EQUATIONS

In this section, we derive the thermodynamic Bethe ansatz
equation§ TBAE's) by following the standard method devel-
oped by Yang and Yarfg and Takahash®® Due to the re-
flection symmetry of the modek; , A, andy,, are all posi-
tive parameters. Though the zero modes are possible
solutions of the BAE, they correspond to vanishing wave
functions?® For convenience, we sek_;j=—k;, \_,=
—Ng andy_,=—x,. When O0sp<S (weak impurity po-
tential, an imaginary charge mode=i(S—p)c is a solution
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of the BAE in the thermodynamic limit —, while for S 1 ”
<p (strong impurity potentia) such a state is not allowed. 02(}\): Z[¢2(A)+¢Q(A)]+Bn2p()\)— Z Anmom(N),
The otherk modes then either take real values or form tightly m=1
bounded two-strings with the following fusion rule: (39)

with the condition

kf=)(7ii

(33

N O

2M+1

f PN =, S nf a(\)d\= ,
These modes correspond to the channel-singlet pairs. At low 2L n 2L
temperatures, the bound states mentioned above are more (40)
stable. Since we are interested only in the low-temperaturgnere

behavior of the impurity, we shall omit the effect of breaking

the bound state in deriving the free energy, because of the min(m,n)
finite energy gap associated with such processes. Bmn= 2 [n+m+1-2I], (41
(i) S>p. In this case, a boundary bound state with =1

=ic(S—p) is stable. We remark that the electrons exactly

on the impurity site lose their channel character because this Ama=[Im—n[]+2[|m—n|+2]+ - +2[m+n—2]

site may belong to either the left half-chain or the right half-

chain ai we cgn see in the Hamiltoniél). That me%ns a +Im+n], (42)

maximum of two electrons with different spins may occupyand[n] is an integral operator with the kernel

this site simultaneously, and a pair state described by Eq.

(33) on the impurity site is forbidden. With the fusion rule 1 ne/2

(33), the BAE can be reduced to a,(\)=— - (43
T \“+(ncl2)

Xy~ iC(S—p+(1/2)r)

4ix, L — n n R
e*xy M T praan and ¢, ¢, and ¢, are given by
i Xy~ NoTic N Xy~ Xs—iC b(N)= 2 ass-2p+r(N), (44)
H : H — (34 rs=1
a=—M Xy_)\a_m{;:fﬁ)(y_X&‘HC
n
N, +ic(S+rp+1/2) N, +(i/2)c ﬁ Na— X, +iC $50)= 2 2 apniasizeap-21(M)
r=x1 N —IC(S+rp+1/2) N, —(i/2)c ZZ 5 M= x,—iC
4 Xsgnn+2S+2+2rp—2I), (45)
M .
LM verpers 39 RN =an(N). (46)

he free energy of the system in a magnetic fieldcan

hereN=(N—1)/2, and the ei b
where ( ) an € elgenenergy can pe expresse e expressed %‘9330

as
N
F/L=J N2—p—H)p(\)d\+ 2, nH N)dX\
E= > x2-Nc2. (36) (= HIpO)dr+ 2 7olM)
y=—N
. . . : . 1
In the following, we omit the second term in E&6) since it —|S+=|H —TJ [(p+pr)In(p+pn)—plinp
only shifts the chemical potential. The solutions of the fused 2

BAE's are described by a sequence of real numbgand a
variety of A strings —pninppldA =T, J [(opt+ aﬂ)ln(an+ o-ﬂ)
n
[
NL=ADEE(n+1-2), j=12,...n, (3D) —onInoy—oy Inofdx, (47)

N . . . where u is the chemical potential. At equilibrium§F=0,
where\ , is the position of therth n string on the real axis.

implying
The distribution ofy, and A\ in the thermodynamic limit
can be described by the densities of particldy) and SF SF
on(\), and the densities of holeg,(x) and ol(\), S 50—()\)20- (48)
respectively’® From the BAE we can easily derive the fol- 3
lowing equations: Notice thatspy, and &rﬂ are not independent froio, and

Sp. From Egs.(38) and(39) we know that

1 1 -
PN+ PN = -+ 56 +[2]p(0) = 2, Brao(V),

. 6ph=—6p+[216p—§ Bnadon, (49)
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1
n
Therefore we have the following equations: 1 . 1
5T | ¢MIN[(1+7 *(N)]dA—H| S+ 7],
N—p—H . .
Inp=——=——-[2lIn(1+7 )—; Bnz IN(1+£,1), 62)

(51) L
Fo=—=T>, fan(x)ln(ug,;l)dx
nH 2 %
IN(1+p) =+ Bz IN(1+ 7 1>+2 Anm IN(1+ 0,

In[1+Z41(N)]
(52) B Tf 4c cosi m\/c) dx (63)
where
(i) S<p. In this case, the boundary molei(S—p)c is
pr(N) o) not a solution of the BAE. The fused BAE read
n(N)=—-<, {a(N)= (53

()\) an(N) . .
bl X,—ic[S—p—(1/2)r]
Defining the integral operatorG with kernel Gg(\) et I X,y +ic[S—p—(1/2)r]
=1/2c coshgr\/c), it can be shown that the following iden-

tities are valid: Notic N e
x H Xy~ . HiXy_Xa—HC, 64)
n—GByn=6n1G, a=—M Xy~ Aa s=—N Xy Xs
mn—G(Bn-1mtBni1m) =G, n>1, (54) NoFiC[S+rp+(12)r] N+ (if2)c

r=%1 N —iC[S+rp+(1/2)r] A ,—(i/2)C
Alm_ GAZm: 51m, ﬁ . M .
< 11 A,y X7+|c Ny )\B+|c
-

nm_G(An—l,m+An+1,m):5nma n>1, (55 —N)\ —)(y—lC B=—-M A _)\B

(65)
whereN=N/2. The TBAE’s take the same form as those of

case(i). The only difference is the free energy of the impu-
rity, which is given by a new class afy,

GAW=Bmn- (56)

With the above identities, Eq$51) and (52) can be further
simplified. Letn=2 in Eq.(52) and applyG on it. We get

H
> B IN(1+ 2, H=GIn(1+ ) —[2]In(1+ 5 Y- T
(57
Substituting Eq(57) into Eqg. (51) we obtain Xsgin+2S+1+r(2p+1)—2I]. (66)

n
ds(N)= r:2+ 21 An+2s+1+r(2p+1)-21|(N)

2

In 7= A - B Gini+y,). (58) IV. GROUND-STATE PROPERTIES

To study the finite temperature properties of the system,
Similarly, with Eqgs.(54) and(55), Eq.(52) can be reduced to we check first the behavior of the driving term in E§9).
Since we are interested in the low-temperature properties of
INZ=—GIn(1+ 7 Y8, +G[IN(1+ns1) the impurity, only the excitations near the Fermi surface are
important. As we discussed above, is relevant to the
+In(1+¢,- D] (59 charge excitations, ang}, are responsible for the spin exci-

Notice we have sef,=0. Equationg51), (52) and(58), (59)  tations. Therefore, whem—0 andH—0, only 7(A~=*A)
are just the TBAE's. In the following, we shall use them &1d £n(A~ %) are important in the driving term of Eq.
alternatively. Substituting Eq$51) and (52) into Eq. (47) (59). Introducing the notation

we obtain the free energy as

7\, T)=esMDIT, (67)
1 1
F/L:f+EFi+EFb, (60) €.(\,0) is nothing but the dressed enetypf the charge
sector. At zero temperature, the Fermi surface of the charge
T sector is given b\ =+ A with e,(=A,0)=0. For|\|<A,
fo _j In[1+ 7~ L(\)]dA, 61) €:(\,0)<0 and for|\|>A, e.(\,0)>0. Based on the above
T argument, we have
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L e(\) one-dimensional open-boundary systems, and does not de-
In(1+2 H)~-—, IN[<A, (68 pend on the details of the impurity.
Now we turn to the impurity(i) p<S. In this case, when
IN(1+ 7" Y~e «MT  [\|>A. (69) 2p=integer the local composite(local spin plus the

bounded electragrbehaves as two ghost spiis-p+ 1/2 and
Therefore, the driving term in Eq59) can be expressed in s—p+1/2:

leading order as
dn=an2s2p+1(N)Fanos_2p+1(N), (78)

D
~GIn(1+7 Y=~ 2T cosian/C) [\[—0 (70) wherea, ,, is the kernel oB,,,. With Egs.(56) and(52), we
can rewrite Eq{(62) as
whereD is the effective band width of the spinons. Thus at

very low temperatures, E@59) can be rewritten as Fi=F’+Ff, (79
|n§n=—m5n,z+@'[|n(l+§n+l) F?:_Tfm
+In(1+¢n-1)]. (71 X[IN(1+ Lo 2p+1) HIN(1+ Lo5-2p+1)JAN, (80)

Such an equation is exactly the same as that of the spin-1

chain with an impurity® and very similar to that of the con- o 1 4

ventional two-channel Kondo probléfrbut with two Fermi Fi==5T| ¢c(M)In(1+ 7 5)dx

points. AsT—0, the driving term in Eq(71) is divergent,

that meang/,—0. In this case, al,, are\-independent and T GB M1+ -0 81
tend to a series of constants, andG— 1/2. Therefore, Eq. rZr 2s+arpraz L7 H(0)]. (81

(71) is reduced to the following algebraic equations: With Eq. (74) we obtain the spin part df; as

:2:(1+§;+1)(1+§:71)1 (72 1
with the boundary conditions Fi—— T IN[(1+ {os52p+ 1) (1+ Eos_2ps1)]- (82
InZF H The residual entropy is
(5=¢5=0, lim—" == (73 by

n—o

Sies= — lim lim (Z—FT' =In[2y/S*—p?]. (83)

As discussed in the earlier publicatioff€!we have the fol- T OHo0

lowing solution:
On the other hand, the residual magnetization can be derived
. sinfP[(n—1)xo]

n

- 1, for n=2, (74
sink? xq JES 1
M= — lim lim—==5—=. (84)
=1, (75) * jloT—odH 2

wherex,=H/2T. Below we discuss the ground-state prop- WhenS=1, the leading term of the impurity susceptibility is
erties of the impurity and the open boundary for differpnt of Curie type since the moment of the local composite can-
values. First we consider the open boundary. Substituting Eqiot be completely screened in this case. It is calculated as
(75 into Eq. (63) we find that the free energy of the open

boundary takes the following form: _ P*F} SP+p?-1/4

Ho0dH? 3T

+0(T9). (85
1

Fp——=TIn2. (76) . . . . o
4 Obviously, the effective moment of the impurity spin is en-

larged by the impurity potential,

Meff= VSZ+ p2' (86)

Notice we have chosen the Bohr magnejog as our unit.

That means the residual entropy of the open boundary is

1

Such a result is nothing but one half of that of a spin-1/2 inFO" 2P#integer we put 2o=integer part of2p. Since for
a two-channel electron systéthWe remark that the spin-1/2 10, £ are almost variable independeaf,(\) in the inte-
degree of freedom has been observed experimentally in @@l can be replaced b§(A). In this case, we have
quasi-one-dimensional spin-1 systéhin an open boundary

S — _
system, the self-avoiding of scattering of a particle with its bn(M)—an2si2pr1(M) +8n2s-2p11 (M)
reflected wave leaves a spin-1/2 hole in the bulk. This can be 20
easily read off from the BAE. Such an effect induces the + 8 S5 — 8
boundary degree of freedom and seems to be universal in ( )21 n2s-2ptal: ®7)
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Therefore, connected at @=integer, i.e. the quantum phase transition
2n _ occurs when P crosses any integer.
— 2S-2p+2l—1
— 2_ K2
Sres=IN[2VS"—p ]‘L;l In = S V. LOW-TEMPERATURE PROPERTIES
= \/(28—2p+2l—1) -1
(89 To get the leading order of the thermodynamics, we ex-

pand Eq.(71) in the limit T—0. In this case, the excitations
near|\|—o dominate and the driving term can be approxi-
mately expressed a3/T exd —(a/c)|\|]. For convenience,
we introduce the variables. = =\ m/c+In(D/T). With the
(i) p=S. In this case, the boundary charge mode is nomethod developed by Andrei and co-worké&tsye know
allowed due to the large impurity potentia/. For that the, allow the following asymptotic expansions:
2p=integer, the impurity spin behaves as two ghost spins ) B
S+p+1/2 andS—p—1/2: {1(z2) =1+ (a1 + Bixp)zee %+ -, (97)

M es= S— (89

E .

Pn=8n 25t 2p+1~ An2p+1-25- (90) {n(Ze)={n +(ant Baxg)e =+ ---, n=2. (99)

With the same procedure as discussed above, we have —Herea, and 3, are some constants. With the above expres-
sions, the temperature dependences of some thermodynamic

p+S guantities can be easily derived. First we consider the open-
Ses=IN\ ;-5 P>S, (91)  boundary effect. Substituting Eq97) into Eq. (63), we
readily obtain that IT terms appear in the free energy,
M.=S, p>S. (92) which give the specific heat and the susceptibility of the

open boundary as

Notice that the above relation is not valid fpe=S. In this
case Cb~—TIn T, Xb"’—m T. (99)

1 1 The above result indicates a typical overscreened two-

Sreszzln[Z\/Es]v Mres=5—z- (93)  channel Kondo behavior. Below we discuss the low-
temperature behavior of the impurity for differgmwalues.

(i) 0<p<1/2. This case provides us clear information

For 2p#integer, : . .
P 9 about how the impurity potential behaves at low tempera-

28 tures. In this casep;, can be written as
dn—8nos+2p+1— Bngpr1-25t 5(>\)|21 On,2p—25+21 s
(94) 7= 2 Bnasa(\+irep). (100
and Therefore, the spin part of the impurity free energy takes the
— 25 _ form
p+S 2p—2S+21-1 _
Ses=In\/ =+ 2 In—— PSS L Loy IN[3+ 725 1(M)]
p—S I=1 \/(2p-25+2|—1)2_1 95 i~ o = 2c cosh (m/c)(A+ircp)]
T cosl{m\/c) cogp)
2s -
1 2l-1 — CJ’ cosi2mwN/c)+cog2pm) L1+ 72512 (M) ]dM,
Ses=5In S+ > In———, p=S. (96)
=2 4l(1-1) (101

The residual magnetization takes the same form as(@B§5.  Substituting Eq(98) into the above equation, we obtain
and(93).

The above discussion shows that the impurity potential s 1 n
has a significant effect on the spin dynamics of the iFr)npurity. Fi==2TIn(1+ Lasr1) ~AT = BH +0(T% H?),
Generally, it splits the impurity spin into two ghost spins. (102
For a weak impurity potentiaV (p<S), the Furusaki-
Nagaosa conjecture is perfectly realiztbtice thatM ¢
=0 for S=1/2, which indicates a ferromagnetic Kondo
screening, while for p=S, a nonzero residual magnetization s_ _
always exists even fo6=1/2. That means the Furusaki- Ci=2AT. xi=2B, (103
Nagaosa singlet is unstable in this case. In fact, there is which indicates a typical local Fermi-liquid behavior. Notice
competition betweed andV, which governs the stability of no overscreened two-channel Kondo effect exists in this case
the ferromagnetic Kondo screening in this system. In addibecause of the formation of the local composite. However,
tion, the residual entropy strongly depends on the impuritythe Furusaki-Nagaosa conjecture is perfectly realized. When
potential. Such an effect characterizes the local glass beha®=1, a Schottky term and a Curie term appear in the specific
ior near the impurity. Notice that the residual entropy is dis-heat and susceptibility, respectively, i.e. the local composite

whereA, B are two positive constants. F8= 1/2, we obtain
the specific hea€} and the susceptibility; as
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is underscreened. Notice that EG01) is correct only for
p<1/2. Whenp—1/2, the free energy Eq101) tends to

zero, which indicates a quantum phase transition at this

point. In fact, whenp=1/2, the local composite behaves as
two effective spinsS+1 andS(S=1). Such a spin-splitting
effect drives the system towards a different fixed point.

(i) 0O<p<S, 2p=integer In this case, the local com-
posite is split into two ghost spinS+p+1/2 and S—p
+1/2:

r:Ei fGO()\) ln[1+€2s+2rp+1(7\)]d)\.
(104

Substituting Eq(98) into the above equation, we easily de-
rive that

FS_

1
= 2T IN[(1+ Gsi2pe )1+ G35 2pi1)]

—A'T?2—B'H?+0(T?,H?), (105

where A’ and B’ are two positive constants. The low-
temperature behavior is similar to case
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2S

lagta, >, 6ny. (109
=1

dn(M)=[alanssii—[a]”

Using a similar procedure as above, we have

S
i

1 1
:_ETI Gy In(1+Z4s1)dN+ ETJ G- In(1+¢y)dA

2S
1
-5T> f a,(\)In(1+ ¢z d\. (110
=1
Very interestingly,{; appears in the above expression. From
Eq. (97) we know that it gives a?InT term in F}. This
induces the negative specific heat and susceptibility
C~TInT,

xi~InT. (111

However, we know that the contributions of the open bound-
ary always take the same form as Efl1) but with negative
sign and larger amplitudes. Therefore, the total specific heat
and the susceptibility are still positive, i.e., well defined.

(vi) H> S, 2p#integer In this case, the local spin is split

into a ghost spinS+p+1/2 and a ghost spin holp—S
+1/2, and

(iii) p=S. In this case, no boundary bound state of charge

exists. The local spin is split by the impurity potential into an
effective spin &+ 1/2 and a spin-1/2 hole. The contribution

of the spin hole is exactly canceled by the boundary spin as

we can see from the BAEB5). Therefore, the impurity and
the boundary effect behave effectively as a spB+2/2.

$n(N) =

[alan o5+ 2pr1(N) —[ @] tan -2+ 1(N)
25

However, its contribution to the thermodynamic quantities isThe free energy takes the form

only one half of that of a spin&+ 1/2 due to the reflection
symmetry.
(iv) p<S, 2p#integer In this case,

dr(N) =[alanss+2p+ 1(N) +[ ] tan s 2pr1(N)
2p

+aa()\)|21 On,2s—2p+21 5 (106)

wherea=2(p—5). With the above relation we obtain

1
FiS:_ETr:E+ fGr()\)|n[1+§2s+zr5+1()\)]d>\
——TE f a,(MIN[1+ g 252NN,
(107
where
eF(P-plofe
Gi()\)zfme*'“’dw. (108

Notice G.(\) is convergent on the real axis sinee<1.
Since Eq(107) is only related ta?,,, n=2, we have a result
similar to Eq.(105. That means the system falls in the same
universal class ap=p.

(v) p S, p#S. No boundary bound state exists via the
strong impurity potential:

+aa()\)|21 On,2p—25+2l - (112
1
==5T2 | rGeIn(1+ Lo zrs:2)dA
——TZ a,IN(1+ L5 ps,)dN. (113

Since onlyZ,, with n=2 appear in the above expression, the
thermodynamic behavior of this case is very similar to that
of case(iv).

VI. CONCLUDING REMARKS

In conclusion, we propose an integrable model for the
ferromagnetic Kondo problem in an interacting one-
dimensional electron system. The impurity potential, origi-
nally a charge effect, enters the spin dynamics effectively at
low energy scales. It is found that there is a competition
between the Kondo couplinjand the impurity potentiaV.
When the ferromagnetic Kondo coupling dominates over the
impurity potential ¥<|SJ), the Furusaki-Nagaosa many-
body singlet can be perfectly realized. For example, when
S=1/2, the residual magnetization of the impurity is zero.
However, when the impurity potential dominates over the
Kondo coupling ¥=|SJ), the fixed point predicted by Fu-
rusaki and Nagaosa is unstable and the system must flow to
a weak-coupling fixed point. Whe®<p<S+1/2, the local
moment is partially screened(.c=S—1/4), and wherp
=S+ 1/2, the impurity moment cannot be screened any more
by the conduction electrondV,.—=S). Such a phenomenon
is very different from that of the conventional Kondo prob-
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lem in a Fermi liquid, where the impurity potential only ing introduces a hybridization between the electrons in the
renormalizes the Kondo coupling constant but does not aftwo different half-chains and must induce the channel anisot-
fect the fixed point of the system. Generally, the impurityropy and splitting. Generally, the tunneling is much weaker
potential splits the impurity spin into two ghost spins, which than the Kondo coupling and the impurity potential in a re-
are responsible for the thermodynamic behavior of the impupulsive interaction system, and is thus not very harmful to
rity. Such a spin-splitting effect was previously found in thethe two-channel Kondo effedt*’ In addition, it is not
t-J model and the spin-chain model with impurittdsThe  possible to recover Lee and Toner’'s conjecture about the
effective moment of the impurity measured from the low- power-law dependence of the Kondo temperature on the
temperature susceptibility is considerably enlarged by th&ondo coupling constani from the present model since the
scalar potential. It is found that the residual entropy dependgatio J/c is fixed in our case. We remark that the antiferro-
not only on the residual magnetization of the impurity, butmagnetic Kondo problem in the multichannel correlated host
also on the value of the impurity potential, which reveals thewas considered by a few auth®t$°recently. For a magnetic
local spin-glass behavior near the impurity. Aw2integer,  impurity coupled antiferromagnetically with a Luttinger lig-
the ghost spins change their values and the residual entropyd, Egger and Komnik found the overscreened two-channel
has a jump, implying that quantum phase transitions occur atondo effect at low temperaturés However, Zvyagin and
these points. Due to the formation of the local composite inSchlottmann showed in a recent papehat the multichan-
the case of a weak impurity potential, no overscreened tworel Kondo behavior may be smeared by the correlation in the
channel Kondo behavior exists for the impurity. However,host. In addition, in a very recent paper by Zvyagin and
the open boundary behaves always like a spin-1/2 and therdohannessoif, some results similar to ours such as the re-
fore shows overscreened two-channel Kondo behavior at lowidual magnetizatiorithey interpreted the partial screening
temperatures. as the “hidden Kondo effect)’and an overscreened Kondo
In this paper, we consider only th&>0 case. For a nega- effect were obtained. It may be instructive to apply the
tive impurity potential, sayp=—S, the local spin is split renormalization-group analysis and the conformal field
into two ghost spins 8+ 1/2 and 1/2. No matter how large theory to this problem to give a full picture of the scalar
the impurity spin, the small ghost spin may induce the overpotential effect on the Kondo problefboth ferromagnetic
screened two-channel Kondo behavior. In this case, the lea@nd antiferromagneticin Luttinger liquids, as well as in
ing term in the susceptibility is of Curie type while the low- higher-dimensional correlated systems.
temperature specific heat is—TInT. Based on the open
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