1,751 research outputs found
Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso
The Grizzly, February 23, 2017
Laptop Program Comes to an End • Digital Humanities Opportunities Take Off • Here\u27s Why the Wi-Fi has Been so Rough This Semester • International Perspective: A Student\u27s Thoughts on Technology Use While Living Abroad • Exploring Campus Culture in a Plugged-In World • Revisiting Ursinus\u27 Lost Connection to Computer History • Opinions: Excessive Technology Use Harms Student Learning; Students Should Use Technology to Stay Organized • What They Want: Athletes Speak About Dream Equipment • Ursinus HEART Lab at the Cutting Edge of Cardiovascular Researchhttps://digitalcommons.ursinus.edu/grizzlynews/1661/thumbnail.jp
Weak Interaction Studies with 6He
The 6He nucleus is an ideal candidate to study the weak interaction. To this
end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to
experiments. Taking full advantage of that available intensity we have
performed a high-precision measurement of the 6He half-life that directly
probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a
measurement of the beta-neutrino angular correlation in 6He beta decay that
will allow to search for new physics beyond the Standard Model in the form of
tensor currents.Comment: 5 pages, 4 figures, proceedings for the Eleventh Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2012
Development of strategies for effective communication of food risks and benefits across Europe: Design and conceptual framework of the FoodRisC project
The FoodRisC project is funded under the Seventh Framework Programme (CORDIS FP7) of the European Commission; Grant agreement no.: 245124. Copyright @ 2011 Barnett et al.BACKGROUND: European consumers are faced with a myriad of food related risk and benefit information and it is regularly left up to the consumer to interpret these, often conflicting, pieces of information as a coherent message. This conflict is especially apparent in times of food crises and can have major public health implications. Scientific results and risk assessments cannot always be easily communicated into simple guidelines and advice that non-scientists like the public or the media can easily understand especially when there is conflicting, uncertain or complex information about a particular food or aspects thereof. The need for improved strategies and tools for communication about food risks and benefits is therefore paramount. The FoodRisC project ("Food Risk Communication - Perceptions and communication of food risks/benefits across Europe: development of effective communication strategies") aims to address this issue. The FoodRisC project will examine consumer perceptions and investigate how people acquire and use information in food domains in order to develop targeted strategies for food communication across Europe.METHODS/DESIGN: This project consists of 6 research work packages which, using qualitative and quantitative methodologies, are focused on development of a framework for investigating food risk/benefit issues across Europe, exploration of the role of new and traditional media in food communication and testing of the framework in order to develop evidence based communication strategies and tools. The main outcome of the FoodRisC project will be a toolkit to enable coherent communication of food risk/benefit messages in Europe. The toolkit will integrate theoretical models and new measurement paradigms as well as building on social marketing approaches around consumer segmentation. Use of the toolkit and guides will assist policy makers, food authorities and other end users in developing common approaches to communicating coherent messages to consumers in Europe.DISCUSSION: The FoodRisC project offers a unique approach to the investigation of food risk/benefit communication. The effective spread of food risk/benefit information will assist initiatives aimed at reducing the burden of food-related illness and disease, reducing the economic impact of food crises and ensuring that confidence in safe and nutritious food is fostered and maintained in Europe.This article is available through the Brunel Open Access Publishing Fund
A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.
Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group.
A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians.
The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role
Frailty modeling of bimodal age-incidence curves of nasopharyngeal carcinoma in low-risk populations
The incidence of nasopharyngeal carcinoma (NPC) varies widely according to age at diagnosis, geographic location, and ethnic background. On a global scale, NPC incidence is common among specific populations primarily living in southern and eastern Asia and northern Africa, but in most areas, including almost all western countries, it remains a relatively uncommon malignancy. Specific to these low-risk populations is a general observation of possible bimodality in the observed age-incidence curves. We have developed a multiplicative frailty model that allows for the demonstrated points of inflection at ages 15–24 and 65–74. The bimodal frailty model has 2 independent compound Poisson-distributed frailties and gives a significant improvement in fit over a unimodal frailty model. Applying the model to population-based cancer registry data worldwide, 2 biologically relevant estimates are derived, namely the proportion of susceptible individuals and the number of genetic and epigenetic events required for the tumor to develop. The results are critically compared and discussed in the context of existing knowledge of the epidemiology and pathogenesis of NPC
Recommended from our members
How predation and landscape fragmentation affect vole population dynamics
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable
populations. The gradient has often been attributed to changes in the interactions between microtines and their predators.
Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species,
it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding
season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating
population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in
the field. The distinction is here attempted using realistic agent-based modelling.
Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and
ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities
whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical
autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of
altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the
presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator
assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the
oscillations.
Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results
allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the
reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape
fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in
future analyses of vole dynamics
- …