4,738 research outputs found
Requirements and Simulation Study of the Performance of EUSO as External Payload on board the International Space Station
Determinants associated with obesity and physical activity in the public and private schools of the city of palermo
Introduction: Obesity is a medical condition associated with premature death and it is a risk factor for many chronic diseases. In this context, performing a regular physical activity promotes a healthy lifestyle, with significant health benefits. The aim of the study was to investigate behaviors that increase the risk of obesity and the determinants that encourage physical activity among adolescents. Materials and methods: The HBSC (Health Behavior in School-aged Children) questionnaire was administered to students in Palermo's private and public schools. For the sampling of public schools the protocol of the HBSC Surveillance System was followed; for the private ones it was opportunistic. Results: Private school students are more likely to exercise more than 3 days per week (OR 1.58) and are more likely to exercise more than 2 times a week (OR 2.08). Obese students in private schools in Palermo are more likely to perform physical activity for less than 3 days a week (OR 3.52) and a higher risk of not having breakfast (OR 10.11) and a snack between main meals (OR 3.82) every day. For all the schools examined, it emerged that obese subjects are more likely not to consume fruit (OR 3.13), to stay more than 6 hours a day in front of PCs and video games (OR 3.24) and more than 2 hours a day in front of TV (OR 3.79). Male students are more likely to perform physical activity for more than 3 days per week (OR 1.48) and intense physical activity at least 2 times per week (OR 1.76) Conclusions: It is necessary to intervene early with training on school and family in order to promote correct and responsible food choices and increase the level of physical activity among students. Therefore prevention interventions must be an integral part of coherent strategies based on tests of agreed effectiveness in order to minimize the risk linked to the development of diseases
Lumped element kinetic inductance detectors maturity for space-borne instruments in the range between 80 and 180 GHz
This work intends to give the state-of-the-art of our knowledge of the
performance of LEKIDs at millimetre wavelengths (from 80 to 180~GHz). We
evaluate their optical sensitivity under typical background conditions and
their interaction with ionising particles. Two LEKID arrays, originally
designed for ground-based applications and composed of a few hundred pixels
each, operate at a central frequency of 100, and 150~GHz (
about 0.3). Their sensitivities have been characterised in the laboratory using
a dedicated closed-circle 100~mK dilution cryostat and a sky simulator,
allowing for the reproduction of realistic, space-like observation conditions.
The impact of cosmic rays has been evaluated by exposing the LEKID arrays to
alpha particles (Am) and X sources (Cd) with a readout sampling
frequency similar to the ones used for Planck HFI (about 200~Hz), and also with
a high resolution sampling level (up to 2~MHz) in order to better characterise
and interpret the observed glitches. In parallel, we have developed an
analytical model to rescale the results to what would be observed by such a
LEKID array at the second Lagrangian point.Comment: 7 pages, 2 tables, 13 figure
Niobium Silicon alloys for Kinetic Inductance Detectors
We are studying the properties of Niobium Silicon amorphous alloys as a
candidate material for the fabrication of highly sensitive Kinetic Inductance
Detectors (KID), optimized for very low optical loads. As in the case of other
composite materials, the NbSi properties can be changed by varying the relative
amounts of its components. Using a NbSi film with T_c around 1 K we have been
able to obtain the first NbSi resonators, observe an optical response and
acquire a spectrum in the band 50 to 300 GHz. The data taken show that this
material has very high kinetic inductance and normal state surface resistivity.
These properties are ideal for the development of KID. More measurements are
planned to further characterize the NbSi alloy and fully investigate its
potential.Comment: Accepted for publication on Journal of Low Temperature Physics.
Proceedings of the LTD15 conference (Caltech 2013
Optical spectroscopy and the nature of the insulating state of rare-earth nickelates
Using a combination of spectroscopic ellipsometry and DC transport
measurements, we determine the temperature dependence of the optical
conductivity of NdNiO and SmNiO films. The optical spectra show the
appearance of a characteristic two-peak structure in the near-infrared when the
material passes from the metal to the insulator phase. Dynamical mean-field
theory calculations confirm this two-peak structure, and allow to identify
these spectral changes and the associated changes in the electronic structure.
We demonstrate that the insulating phase in these compounds and the associated
characteristic two-peak structure are due to the combined effect of
bond-disproportionation and Mott physics associated with half of the
disproportionated sites. We also provide insights into the structure of excited
states above the gap.Comment: 12 pages, 13 figure
Geoneutrinos in Borexino
This paper describes the Borexino detector and the high-radiopurity studies
and tests that are integral part of the Borexino technology and development.
The application of Borexino to the detection and studies of geoneutrinos is
discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200
Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz
We have developed Lumped Element Kinetic Inductance Detectors (LEKID)
sensitive in the frequency band from 80 to 120~GHz. In this work, we take
advantage of the so-called proximity effect to reduce the superconducting gap
of Aluminium, otherwise strongly suppressing the LEKID response for frequencies
smaller than 100~GHz. We have designed, produced and optically tested various
fully multiplexed arrays based on multi-layers combinations of Aluminium (Al)
and Titanium (Ti). Their sensitivities have been measured using a dedicated
closed-circle 100 mK dilution cryostat and a sky simulator allowing to
reproduce realistic observation conditions. The spectral response has been
characterised with a Martin-Puplett interferometer up to THz frequencies, and
with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an
optical sensitivity of about ~ (best pixel), or
~ when averaged over the whole array. The optical
background was set to roughly 0.4~pW per pixel, typical for future space
observatories in this particular band. The performance is close to a
sensitivity of twice the CMB photon noise limit at 100~GHz which drove the
design of the Planck HFI instrument. This figure remains the baseline for the
next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&
ULTRA : Uv Light Transmission and Reflection in the Atmosphere - Technical report - A supporting experiment for the EUSO project
- …
