9 research outputs found

    Cell-free prediction of protein expression costs for growing cells

    Get PDF
    Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway

    Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many strains of <it>Thermus </it>have been isolated from hot environments around the world. <it>Thermus scotoductus </it>SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different <it>Thermus thermophilus </it>strains have been completed. This paper represents the completed genome from a second <it>Thermus </it>species - <it>T. scotoductus</it>.</p> <p>Results</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the <it>Thermus thermophilus </it>genomes. The <it>T. thermophilus </it>megaplasmid genes are part of the <it>T. scotoductus </it>chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of <it>T. scotoductus and T. thermophilus</it>. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from <it>Meiothermus ruber</it>. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of <it>Thermus scotoductus </it>was confirmed experimentally as expected as most of the proteins of the natural transformation system of <it>Thermus thermophilus </it>are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle.</p> <p>Conclusions</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to <it>Thermus thermophilus</it>. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of <it>Thermus scotoductus </it>illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.</p

    Cell-free prediction of protein expression costs for growing cells

    Get PDF
    Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any gene is a major challenge, as multiple processes and factors determine translation efficiency. Here, to enable prediction of the cost of gene expression in bacteria, we describe a standard cell-free lysate assay that determines the relationship between in vivo and cell-free measurements and γ, a relative measure of the resource consumption when a given protein is expressed. When combined with a computational model of translation, this enables prediction of the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway

    Assessment of Microbiological Contamination of Fresh, Minimally Processed, and Ready-to-Eat Lettuces (Lactuca sativa), Rio de Janeiro State, Brazil

    No full text
    Made available in DSpace on 2015-06-12T13:57:52Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) marize_maigostovichetal_IOC_2014.pdf: 187809 bytes, checksum: e90a75262dacc1f70029bab23fe1e7b1 (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Departamento de Microbiologia. Laboratório de Produtos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Departamento de Microbiologia. Laboratório de Produtos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Departamento de Microbiologia. Laboratório de Produtos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Departamento de Microbiologia. Laboratório de Produtos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Departamento de Microbiologia. Laboratório de Produtos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.This study aimed to assess the microbiological contamination of lettuces commercialized in Rio de Janeiro, Brazil, in order to investigate detection of norovirus genogroup II (NoV GII), Salmonella spp., total and fecal coliforms, such as Escherichia coli. For NoV detection samples were processed using the adsorption-elution concentration method associated to real-time quantitative polymerase chain reaction (qPCR). A total of 90 samples of lettuce including 30 whole fresh lettuces, 30 minimally processed (MP) lettuces, and 30 raw ready-to-eat (RTE) lettuce salads were randomly collected from different supermarkets (fresh and MP lettuce samples), food services, and self-service restaurants (RTE lettuce salads), all located in Rio de Janeiro, Brazil, from October 2010 to December 2011. NoV GII was not detected and PP7 bacteriophage used as internal control process (ICP) was recovered in 40.0%, 86.7%, and 76.7% of those samples, respectively. Salmonella spp. was not detected although fecal contamination has been observed by fecal coliform concentrations higher than 102 most probable number/g. E. coli was detected in 70.0%, 6.7%, and 30.0% of fresh, MP, and RTE samples, respectively. This study highlights the need to improve hygiene procedures at all stages of vegetable production and to show PP7 bacteriophage as an ICP for recovering RNA viruses’ methods from MP and RTE lettuce samples, encouraging the evaluation of new protocols that facilitate the establishment of methodologies for NoV detection in a greater number of food microbiology laboratories

    How hyperthermophiles adapt to change their lives:DNA exchange in extreme conditions

    Get PDF
    <p>Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species likely plays a role in repair of DNA via homologous recombination, a process that is crucial under DNA damaging conditions such as high temperatures. Several mechanisms for the transfer of DNA have been described in prokaryotes, emphasizing its general importance. However, until recently, not much was known about this process in prokaryotes growing in highly thermophilic environments. This review describes the different mechanisms of DNA transfer in hyperthermophiles, and how this may contribute to the survival and adaptation of hyperthermophilic archaea and bacteria to extreme environments.</p>

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text
    corecore