512 research outputs found

    Mistaken assumptions drive new Six Sigma model off the road

    Get PDF
    Oosterhuis and Coskun recently proposed a new model for applying the Six Sigma concept to laboratory measurement processes. In criticizing the conventional Six Sigma model, the authors misinterpret the industrial basis for Six Sigma and mixup the Six Sigma “counting methodology” with the “variation methodology”, thus many later attributions, conclusions, and recommendations are also mistaken. Although the authors attempt to justify the new model based on industrial principles, they ignore the fundamental relationship between Six Sigma and the process capability indices. The proposed model, the Sigma Metric is calculated as the ratio CVI/CVA, where CVI is individual biological variation and CVA is the observed analytical imprecision. This new metric does not take bias into account, which is a major limitation for application to laboratory testing processes. Thus, the new model does not provide a valid assessment of method performance, nor a practical methodology for selecting or designing statistical quality control procedures

    Energy Dissipation on Stepped Spillways

    Get PDF
    The author provided interesting data on stepped spillway flows. The writer would like to add some information on flow resistance of skimming flows and discuss the energy dissipation on stepped chutes. It will be shown that the author's results are not dissimilar with results previously obtained by other researchers

    S.A.V.E. M.E.

    Get PDF
    S.A.V.E. M.E. stands for Submerged Automated Vehicular Elevation Minor Extraction or alternatively a Home Swimming Pool Rescue Device. The objective of this project is to design and prototype a system that will make unattended swimming pools through detecting a victim’s presence, deploying a means to save the victim, and alerting others nearby of the situation. This system encompasses sensors and devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently sized object entering the pool when the system is armed, a device will maneuver to the victim and deploy a flotation device that could assist or raise the drowning victim

    Integration of flux tower data and remotely sensed data into the SCOPE simulator: A Bayesian approach:abstract

    Get PDF
    Quantification of gross primary production (GPP) together with the continuous monitoring of i ts temporal variations are indispensable to obtain reliable data for indicating the capacity of f orests to sequester carbon. GPP can be quantified using two sources: (a) process-based simulator (PBS); and (b) flux tower measurements of the net ecosystem exchange (NEE) of CO2. Additionally, remotely sensed optical data, which can be linked to the vegetation properties, carry valuable information to express canopy photosynthesis (i.e., GPP). A PBS has an advantage over flux tower and remotely sensed optical data because it can be run at time scales beyond the limit of direct measurements. Simulation of GPP by PBS at a high accuracy, however, depends upon how well the parameterization is achieved. A process-based simulator SCOPE (Soil-Canopy-Observation of Photosynthesis and Energy balance) links top of canopy observations of radiance with land surface processes (that include GPP simulation). Some parameters of SCOPE are difficult to obtain from field observations. Reliable estimates of parameters can, however, be obtained using calibration against observations of output. In this study, we present a Bayesian framework to calibrate SCOPE simulator against the estimates of GPP (separated from NEE), and the top of canopy reflectance retrieved from the remote sensing images. This framework has been tested for spruce dominated forest site at Bílý Kříž, Czech Republic. We focus on the retrieval of parameters, on which GPP are expected to be most sensitive, such as leaf area index, leaf chlorophyll content, leaf water content, leaf dry matter content, senescent material content, maximum carboxylation capacity, and stomatal conductance. A Bayesian framework also allowed to estimate the uncertainties of both the SCOPE parameters and the simulated GPP, which is important in the sense that it helps to determine how much confidence can be placed in the results of forest carbon-related studies

    Understanding the impact of constraints: A rank based fitness function for evolutionary methods

    Get PDF
    There are design problems where some constraints may be considered objectives as in “It would be great if the solution we obtained had this characteristic.” In such problems, solutions obtained using multi-objective optimisation may help the decision maker gain insight into what is achievable without fully satisfying one of these constraints. A novel fitness function is introduced into a multi-objective population based evolutionary optimisation method, based on a plant propagation algorithm extended to multi-objective optimisation. The optimisation method is implemented and applied to the design of off-grid integrated energy systems for large scale mining operations where the aim is to use local renewable energy generation, coupled with energy storage, to eliminate the need for transporting fuel over large distances. The latter is a desired property and in this chapter is treated as a separate objective. The results presented show that the fitness function provides the desired selection pressure and, when combined with the multi-objective plant propagation algorithm, is able to find good designs that achieve the desired constraint simultaneously

    Analytical Sigma metrics: A review of Six Sigma implementation tools for medical laboratories

    Get PDF
    Sigma metrics have become a useful tool for all parts of the quality control (QC) design process. Through the allowable total error model of laboratory testing, analytical assay performance can be judged on the Six Sigma scale. This not only allows benchmarking the performance of methods and instruments on a universal scale, it allows laboratories to easily visualize performance, optimize the QC rules and numbers of control measurements they implement, and now even schedule the frequency of running those controls

    Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Familial keloids have been reported, having either autosomal dominant or autosomal recessive inheritance. We wished to determine the inheritance pattern and phenotype of keloids among multigenerational families, as a prelude to a positional mapping strategy to identify candidate genes.</p> <p>Methods</p> <p>We studied three African American families, one Afro-Caribbean family and one Asian-American family. Phenotyping including assessing all patients for the presence, distribution, and appearance of keloids, together with the timing of keloid onset and provocative factors. The clinical trial was registered at clinicaltrials.gov (NCT 00005802).</p> <p>Results</p> <p>Age of keloid onset varied considerably within families, but commonly occurred by the second decade. The fraction of affected individuals was 38%, 45%, 62%, 67% and 73% among the five families respectively. Keloid severity and morphology differed within and between families. A novel finding is that certain families manifest keloids in distinct locations, with one family showing an excess of extremity keloids and two families showing an excess of axilla-groin keloids.</p> <p>Conclusion</p> <p>Familial keloids appear to most commonly manifest autosomal dominant or semidominant inheritance, and there may be familial patterns of keloid distribution.</p

    Development of a thermal ionizer as ion catcher

    Full text link
    An effective ion catcher is an important part of a radioactive beam facility that is based on in-flight production. The catcher stops fast radioactive products and emits them as singly charged slow ions. Current ion catchers are based on stopping in He and H2_2 gas. However, with increasing intensity of the secondary beam the amount of ion-electron pairs created eventually prevents the electromagnetic extraction of the radioactive ions from the gas cell. In contrast, such limitations are not present in thermal ionizers used with the ISOL production technique. Therefore, at least for alkaline and alkaline earth elements, a thermal ionizer should then be preferred. An important use of the TRIμ\muP facility will be for precision measurements using atom traps. Atom trapping is particularly possible for alkaline and alkaline earth isotopes. The facility can produce up to 109^9 s1^{-1} of various Na isotopes with the in-flight method. Therefore, we have built and tested a thermal ionizer. An overview of the operation, design, construction, and commissioning of the thermal ionizer for TRIμ\muP will be presented along with first results for 20^{20}Na and 21^{21}Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS 2007

    Performance enhancement of safety message communication via designing dynamic power control mechanisms in vehicular ad hoc networks

    Get PDF
    In vehicular ad hoc networks (VANETs), transmission power is a key factor in several performance measures, such as throughput, delay, and energy efficiency. Vehicle mobility in VANETs creates a highly dynamic topology that leads to a nontrivial task of maintaining connectivity due to rapid topology changes. Therefore, using fixed transmission power adversely affects VANET connectivity and leads to network performance degradation. New cross-layer power control algorithms called (BL-TPC 802.11MAC and DTPC 802.11 MAC) are designed, modeled, and evaluated in this paper. The designed algorithms can be deployed in smart cities, highway, and urban city roads. The designed algorithms improve VANET performance by adapting transmission power dynamically to improve network connectivity. The power adaptation is based on inspecting some network parameters, such as node density, network load, and media access control (MAC) queue state, and then deciding on the required power level. Obtained results indicate that the designed power control algorithm outperforms the traditional 802.11p MAC considering the number of received safety messages, network connectivity, network throughput, and the number of dropped safety messages. Consequently, improving network performance means enhancing the safety of vehicle drivers in smart cities, highway, and urban city. © 2020 Wiley Periodicals LLC
    corecore