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Abstract 

Ten deaths per day occur in the United States due to unintentional drownings. The 

majority of victims are children between the ages of 1-4 years old and occur typically in home 

swimming pools. A system is needed for home swimming pools that can not only detect a 

potential drowning child, but also attempt to save them. The objective of this project is to design 

a prototype robotic system that, when armed, detects a child’s fall into a pool. A rechargeable 

robot placed at the bottom of a pool will maneuver to the location where the child entered the 

pool, defined as the splash location, and deploy a rescue device to save the child while using an 

alarm to alert others in the area. To accomplish this, acoustic devices will be used to triangulate 

the child’s splash location and an inductive charging system will be incorporated at a specific 

portion of the track, defined as the home station, to charge the robot without user dependence. 

All components are designed for a 3m by 3m pool.  
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Problem Statement 

 

Need Statement [PB, TD, AD, KO]: 

According to the Center for Disease Control and Prevention, there are approximately ten 

deaths per day due to unintentional drowning, which results in an average of 3,536 deaths per 

year. The highest drowning rates are found among children ages 1 to 4 years old and occur 

mostly in home swimming pools. Some of the factors that influence the risk of drowning include 

lack of barriers and lack of close supervision. Unattended swimming pools can pose a serious 

risk to unsupervised children, inexperienced swimmer, and even pets.  A system is needed that 

can not only detect a potential drowning victim, but also attempt to save them. [1]  

 

Objective Statement [PB, TD, AD, KO]: 

The objective of this project is to design and prototype a system that will make 

unattended swimming pools through detecting a victim’s presence, deploying a means to save 

the victim, and alerting others nearby of the situation. This system emcompasses sensors and 

devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently 

sized object entering the pool when the system is armed, a device will maneuver to the victim 

and deploy a flotation device that could assist or raise the drowning victim. [1] 

 

Research Survey [PB, TD, AD, KO]:  

According to the CDC, over the past decade, there has been an average of 3,500 

accidental drowning deaths per year in the United States. [1] Currently, drowning is the leading 

cause of accidental death for children among the ages of 1-4 and the second leading cause of 

accidental death for children ages 1-14. [2,3] For young children the most common location of 
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these drownings are in home swimming pools. This research has triggered the following 

question: ‘What can people do to prevent this tragedy from happening?’ Currently there are a 

variety of swimming pool alarms available on the market for consumers to install in, or around, 

their pools. These alarms range anywhere from as cheap as twenty dollars on Amazon up to 

almost one thousand dollars for a high-end system. No matter how complex or simple, the 

majority of these alarms all have one thing in common: they trigger an audible alarm, but do not 

provide a solution to try to save the person from drowning.  

These horrible tragedies have been occuring ever since the invention of the swimming 

pool, yet there is still no true proactive solution to save a drowning victim. Unlike the other 

alerting and sensing methods that have been researched, this design project would use sonar to 

detect the presence of a child in an unsupervised pool. Once detected, the sensor would trigger an 

alarm to alert nearby person(s) and dispatch a device that would maneuver underneath the body, 

then deploy an inflatable (pneumatic) rubber tube that would simultaneously surround and lift 

the body to the surface of the pool in order to save the drowning child.  

Lidar, radar, and sonar are different ways that can be used for object detection. Sonar, 

abbreviated for sound navigation and ranging is typically used for underwater detection of 

objects and measuring the depth of water. The detection works by “emitting sound pulses and 

measuring how long it takes the echoes to return.” [4]  

A type of system that can be utilized to locate the position and identify an object is digital 

sonar. Digital sonar “uses digital signal processing theory and techniques” and “compared with 

the analogue processing of signal, digital processing has many advantages, as digital data is easy 

to store, transmit, and process.” [5] The purpose for utilizing sonar is because sound waves are 

the only physical medium which has the ability to propagate through water over a long distance. 
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Incorporated in a sonar system is the “wet end”, which contains the components such as the 

transmitter and receiver array, cables and connectors which are underwater. In addition, there is a 

“dry end” which is installed above ground and contains the signal processing console and/or 

controller. [5] 

The article titled, Acoustic beam profile-based rapid underwater object detection for an 

imaging sonar, published in the Journal of Marine Science and Technology looked into a method 

of high-speed imaging sonar to detect underwater objects. When suspected objects were found an 

alarm signal would alert underwater vehicles or human operators. This idea of alerting 

corresponds with the project’s idea of having an alarm if the sonar picked up an object the size of 

a small child that had fallen into the pool. For their high-speed imaging they use three stages of 

detection. An initial scan is performed that any object that is seen is considered an object. If an 

object is detected a second scan is performed as an AUV (autonomous underwater vehicle) 

approaches the object. Finally, once the AUV is close enough to the object the third scan is 

performed to the object to see if the object is the ‘target’ object. [6] This idea applies into the 

project as the idea of having the lifesaving component would need to also detect the object that 

falls in the pool in order to save the person or pet. 

Another example of sonar systems being implemented for data acquisition of objects or 

surfaces at large underwater distances is underwater object location identification being 

performed in the process of constructing ports when laying new cables and pipelines. For 

detecting objects such as large submerged vessels, a multibeam sonar system, which uses an 

interferometric acoustic detection method, to collect acoustic backscatter information is used to 

detect sea floor objects, then uses GPS to determine position and 3D orientation. [7] As the 

proposed application implements sonar on a smaller scale the application will utilize similar real-
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time data collection, real-time data processing concepts, plotting, and volume computations of 

the swimming pool area to determine location of the victim.  

 As mentioned, there are various pool alarm ideas and products in existence that use a 

variety of detecting approaches. One of the more inaccurate solutions found incorporates a 

system in which two conductors are attached to the pool wall, one below the water and one 

above. Upon armed, an alarm is held in an energized state by electronic switching until a splash 

of water, occurring when someone falls into the pool, ‘closes’ the conductor sounding the alarm. 

[8]  This system does not locate or differentiate between objects that enter the pool. So whether a 

branch or person enters, no differentiation is made. Using a sonar system, the design project 

system will be able to distinguish between objects to ensure the floatation device deployment and 

alarm are enacted appropriately. 

 Another system solution that exists that can detect falls into a swimming pool will 

respond by sounding an alarm or calling numbers on an emergency call list. This system involves 

the use of one or multiple wireless water wave detector devices where each is a “low power, 

wireless, dome-shaped floatation device that would float freely in the to-be-monitored swimming 

pool”. [9] This specific system also incorporated a camera identification system that could be 

mounted to the pool fence.  

The wave detector of this systems measures three dimensional water wave acceleration 

motion vectors in real-time using a three axis accelerometer. The acceleration data is transmitted 

over a radio frequency link to an embedded collector analyzer server which also contains the 

alarm generator. The software driving this system uses “a unique differential acceleration time 

derivative algorithm” [9] and motion analysis software to differentiate between normal wind 
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driven waves versus waves induced by a fall or if the detector is removed from the pool and is 

sitting on stable ground. 

A drawback of this technology is that if the wave detectors drift too close to one another, 

the user once alerted by the system must physically come to the pool to spread them out on the 

water’s surface to become an effective detection system again. [9] The design project system 

will, as described, not only alert but perform a means of rescue. The project components will be 

such that the system, once placed or mounted, will not experience any kind of interference or 

physical hindrance that would require human assistance to once again perform its specific task.  

A system similar to the proposal uses sonar to detect motionless bodies in a swimming 

pool. [10] While most pool alarms are designed to work with no one in the pool, this system is 

designed to work even with people swimming in the water. The primary idea behind this system 

is that if someone is motionless at the bottom of the pool, it is harder to detect with many others 

in the pool. Therefore, the sonar system used here is designed so that large unmoving objects can 

be detected even with other disturbances like pool-goers. 

The system uses multiple sonar systems to scan the top of the pool and the bottom of the 

pool during its use. This allows them to detect objects on the top and bottom of the pool. Here, 

the sonar system works by sending successive frames of image data containing contours of 

objects in the pool. These contours of image data are only sent if the object is within a certain 

size threshold. If the contours in the frames of the data consistently have a displacement that is 

less than a predetermined threshold, then the system will identify it as a motionless body. 

Afterwards, the alarm will be activated. [10] 

One of the limitations of this is that if a very large object is detected motionless in the 

pool, the alarm will still sound anyway. Namely, any object larger than a human can cause this. 
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Another drawback is, like with many other designs, this system is designed around the idea that 

someone will be near in the event of a motionless body in the pool. There is no contingency plan 

in a scenario where no one is around. [10] 

After extensive research, there was only one patent that seemed in principle similar to 

what the project plans to accomplish in regards to attempting a rescue; however, the pending 

patent, as outlined, was purely conceptual involving the use of raising platforms from beneath 

the water as a means of victim rescuing [9]. However there were no detailed engineering 

specifications.  Whereas, we are proposing to use a sonar-guided device that would move along 

the bottom of a pool in order to locate the victim.  The patent pending “concept” only refers to 

the use of sensors in a general term and no specific technology is referenced. [11] 
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Marketing Requirements [PB, TD, AD, KO]:  

1. The system should be used for a home swimming pool when no one is using it.  

2.The system should be able to be armed. 

3.The system should be waterproof. 

4.The system should perform autonomously. 

5.The system should contain an alarm, a detection device, and a rescue device. 

6.The alarm should be able to be able to be heard from a fair distance away. 

7.The detection device should detect for person presence. 

8. The system should perform real-time tracking. 

9. The detection device should communicate to the rescue device and the alarm. 

10.The rescue device should be able to maneuver to the location of the person. 

11.The rescue device should deploy a means to raise the person to the surface of the water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

Objective Tree [PB, TD, AD, KO]: 

 

The objective tree outlines the four main areas of S.A.V.E. M.E. and the requirements for each 

section.  

 
Figure 1: Objective Tree 
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Design Requirements Specification: 

 

Marketing Requirements [PB, TD, AD, KO]:  

 

1. The system should be used for a home swimming pool when no one is using it.  

2.The system should be able to be armed. 

3.The system should be waterproof. 

4.The system should perform autonomously. 

5.The system should contain an alarm, a detection device, and a rescue device. 

6.The alarm should be able to be able to be heard from a fair distance away. 

7.The detection device should detect for person presence. 

8. The system should perform real-time tracking. 

9. The detection device should communicate to the rescue device and the alarm. 

10.The rescue device should be able to maneuver to the location of the person. 

11.The rescue device should deploy a means to raise the person to the surface of the water.  
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Design Requirements 

Marketing Requirements Engineering Requirements Justification 

1,2 The system should only be 

armed/on by a mechanical switch 

when no one is using the 

swimming pool.  

Majority of at home swimming pool 

drownings occur when the pool is 

unattended.  

3 The system should be waterproof. Electrical components must be sealed in a 

container that does not interfere with 

daily use of the pool. 

6 The alarm should operate at 100 

decibels. 

Typical swimming pool alarms on the 

market are set around 100 dB. Other 

emergency alarms, like the household 

smoke alarm, operate at around 85 dB. 

2,4,7,8,9,10, 11 The inductive charger should be 

powered by 12 VAC and set to a  

desired resonant frequency  to be 

fully charged in less than 8  

hours.  

The system should be staying inside the 

pool at all times.  The robot needs to be 

ready to deploy at any time of day.  

7,8 The robot should be able to 

identify the splash location of the 

child.  

Triangulating the location of the victim is 

the necessary initial step in order to 

deploy the robot. 

10 The robot should not weigh more 

than 45 kg (100 lbs).  

The robot should be small enough that it 

does not interfere with the use of the pool. 

5, 11 The rescue raft should be have a 

minimum surface area of 1m2. 

The average height range of an American 

toddler goes from 0.855 m to 1 m. 

9,10 The detection process should take 

no longer than 5 seconds. 

A drowning victim becomes unconscious 

within two minutes.  

10 The robot should move no slower 

than 0.1524 m/sec (0.5ft/sec). 

A drowning victim becomes unconscious 

within two minutes.  

10 The deployment of the rescue 

should move no slower than 

0.3048m/sec (1 ft/sec). 

A drowning victim becomes unconscious 

within two minutes.  
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Accepted Technical Design 

 

 

Block Diagram Level 0 [PB, TD, AD, KO]: 

 

The level 0 block diagram is a basic layout of how S.A.V.E. M.E. will work. First the system 

needs to be armed by the user so the device will only then detect for children falling in the pool. 

Once a child is detected in the pool, simultaneously the alarm will be activated and the device 

will begin to travel to the splash location.   

 

 
Figure 2: Level 0 Block Diagram 
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Block Diagram Level 1 w/Functional Requirements [PB, TD, AD, KO]: 

 

The level 1 block diagram again shows how the system will work, but now with more detail 

compared to level 0. In this diagram the project is broken up into 5 main sections: the user 

interface, power supply, home station, robot, and the rescue device.  

 

 
Figure 3: Level 1 Block Diagram 

 

 

Tables 1-5 outline each section of the Level 1 block diagram including: the power supply, home 

station, user interface, robot, and the rescue device.  
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Module Power Supply 

Designer Taylor Davis and Adrianna Dunlap 

Inputs 120 VAC 

Outputs Charging Frequency 

DC Supply 

Functionality Convert 120VAC wall power to two forms: 

● Lower Voltage, specific frequency AC Supply 

● 5-12V DC Supply 

 

Table 1 

 

 

Module User Interface 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Armed? 

Robot Not detected? 

Outputs Armed Status 

Alarm 

Functionality Read in Armed Switch status and if armed send status to Robot 

Read in whether Robot has left the home station, and if so sound 

alarm. 

Table 2 

 

Module Home Station 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Charging Frequency 

Outputs Inductive Charging 

Robot Not Detected? 

Functionality Apply AC one coil of inductive charging system 

Table 3 
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Module Robot 

Designer Taylor Davis, Adrianna Dunlap, Parsa E. Bayat, and Kelly O’Neill 

Inputs Inductive Charging 

Armed Status 

Child Presence 

Outputs Deploy? 

Functionality When Armed: 

● Use Hydrophone to detect child presence 

● When detected, maneuver along track to location of child 

entry 

● Initiate rescue device inflation 

Table 4 

 

Module Rescue Device 

Designer Taylor Davis, Adrianna Dunlap, Parsa E. Bayat, and Kelly O’Neill 

Inputs Deploy? 

Outputs Save Child 

Functionality Catches child.Rises to surface. 

Table 5 
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Level 2 Hardware Block Diagram with Functional Requirements 

 

The level 2 hardware block diagram is an in-depth figure on the functionality of S.A.V.E. M.E. 

The project is first broken down into three sections: above water, the home station, and 

underwater. The above water section outlines how the system needs to be armed and how the 

user interface and alarm will be powered. Next, the figure transitions into the home station 

section which is where the robot will dock underwater as well as charge inductively. Lastly, the 

elements of the project that will be located underwater are explained. This section mainly 

focuses on the tracking and movement process of the robot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Level 2 Hardware Block Diagram 
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Tables 6 through 26 elaborate on the components of the Level 2 Hardware Block Diagram. The 

components comprising the Inductive charging portion of the system are covered in Tables 6 

through 9. The battery pack is included in Tables 10 and 11, while the detection of the splash 

location for the robot is covered in Tables 12 and 13. The breakdown of deployment for the 

rescue device is outlined in Tables 14-16. In Tables 17 and 18 the movement of the robot itself is 

depicted, while in Tables 19, 20, and 26  the arming of the robot to be used while the pool is not 

in use is defined. Table 21 outlines the user interface that will be used outside the swimming 

pool, and the alarm that will be used is broken down among Tables 22, 23, and 25. In addition 

the DC Regulator that will be used to provide power to the electronics outside of the swimming 

pool such as the user interface and alarm is detailed in Table 24. 

 

Module Voltage and Frequency Converter 

Designer Taylor Davis and Adrianna Dunlap 

Inputs 120 VAC, 60Hz 

Outputs Charging Frequency 

Lowered AC Voltage 

Functionality Convert 120VAC wall power for inductive charger: 

● Lower Voltage, specific frequency AC Supply 

 

Table 6 
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Module Ground Side Coil 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Charging Voltage and  Frequency 

Outputs Electromagnetic Field 

Functionality Apply AC voltage to one coil of inductive charging system to 

induce current in the robot side coils 

Table 7 

 

Module Vehicle Side Coils 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Electromagnetic Field 

Outputs AC Current 

Functionality Takes the electromagnetic field produced by the home  and converts 

it into AC to be converted for charging 

Table 8 

 

Module AC/DC Converter 

Designer Taylor Davis and Adrianna Dunlap 

Inputs AC Voltage 

Outputs DC Voltage 

Functionality Converts AC voltage to DC voltage to supply the robot’s batteries.  

Table 9 

 

 

 

 

 

 

 

 

 

 



29 

Module Battery Pack Balance Charger 

Designer Taylor Davis and Adrianna Dunlap 

Inputs DC Voltage 

Outputs DC Voltage 

Functionality Equally distributes the DC voltage to each battery cell.  

Table 10 

 

Module Battery Pack 

Designer Taylor Davis, Adrianna Dunlap, and Kelly O’Neill 

Inputs DC Voltage 

Outputs DC Voltage 

Functionality Provides DC Voltage to the microcontroller, sensors, motors, and 

motor controllers. 

Table 11 

 

Module Robot Microcontroller  

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs DC Voltage, Arming Signal, Acoustic Waveforms 

Outputs Propeller Control Signals, Raft Release Control Signals, Splash 

Detected 

Functionality Uses the sound waveforms from the acoustic device to determine 

the location of whatever falls into the pool. The control signals will 

activate the motors until they reach the intended location and release 

the raft. Receives armed status and sends initial alarm signal. 

Table 12 
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Module Acoustic Devices 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Splash (sound from entity falling into the pool) 

Outputs Acoustic Waveforms 

Functionality At least four devices will collect data. Acoustic waveforms will be 

sent to the microcontroller to calculate the splash location. 

Table 13 

 

Module Raft Release Motor Controller(s) 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Raft Release Control Signals 

Outputs Raft Release Speed Control  

Functionality Converts serial data from microcontroller to an interpretable release 

speed for raft motors  

Table 14 

 

Module Raft Release Motor(s) 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Raft Release Speed Control 

Outputs Release Rate 

Functionality Controls the speed of deployment of the raft.  

Table 15 
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Module Raft 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Motor Controlled Signal 

Outputs Floatation underneath child 

Functionality Lifts child above the water's surface.  

Table 16 

 

Module Propeller Motor Controller(s) 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Propeller Control Signals 

Outputs Propeller Speed Control  

Functionality Controls the speed of propellers.   

Table 17 

 

Module Propellers 

Designer Taylor Davis and Adrianna Dunlap 

Inputs Propeller Speed Control 

Outputs Robot Movement 

Functionality Moves the robot in a bidirectional motion 

Table 18 

 

Module Arming Transmitter 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Armed Status 

Outputs Signal 

Functionality On Home Station:  - Provides transmission of armed switch status to 

be received by on-robot sensor 

Table 19 
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Module Arming Receiver 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Signal 

Outputs Armed Status 

Functionality On Robot - Receives armed switch signal to be send to robot 

microcontroller  

Table 20 

 

Module User Interface Microcontroller  

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs DC Voltage, Splash Detected, Arm Switch Status 

Outputs Armed Status, Alarm Enable 

Functionality Interprets armed switch status and sends status to robot. Receives a 

signal to sound an alarm when the robot detects a splash and leaves 

the home station.  

Table 21 

 

Module Alarm Transmitter 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Splash Detected 

Outputs Signal 

Functionality On Robot:  - Provides transmission for sounding alarm to be 

received by home station sensor 

Table 22 
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Module Alarm Receiver 

Designer Kelly O’Neill and Parsa E. Bayat 

Inputs Signal 

Outputs Splash Detected 

Functionality On Home Station - Receives signal representing sound alarm status 

to be interpreted by user interface microcontroller  

Table 23 

 

Module DC Regulator 

Designer Kelly O’Neill and Parsa Bayat 

Inputs 120VAC 

Outputs DC Voltage 

Functionality Rectifies and converts VAC to low DC voltage to power User 

Interface Microcontroller, amplifier, speaker 

Table 24 

 

 

Module Alarm 

Designer Kelly O’Neill and Parsa Bayat  

Inputs Alarm Enable 

Outputs Audible Sound 

Functionality Initiates a 100dB alarm  

Table 25 
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Module Arm Switch 

Designer Kelly O’Neill and Parsa Bayat 

Inputs User Input 

Outputs Armed Switch Status 

Functionality Provides user control to arm the system. 

Table 26 

 

 

 

 

 

Level 2 Software Block Diagram with Functional Requirements 

 

At the start of the diagram, we will be waiting for input from the microphone. When a proper 

microphone input is received, a signal will be sent to sound the alarm. From there, the data from 

the microphone is sent to the processor. The processor will interpret the data and use it to 

determine the location of the splash. The determined location will correspond to a 1 meter by 1 

meter square in the pool. Next, the motor must be turned on for a certain period of time. The 

duration that the motor is turned on will be set based on the square chosen in the previous block. 

After that, the motor will be turned on. The motor will be kept on until the duration of time has 

ended. When time is up, the motor will be turned off and the raft will be deployed. 
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Figure 5: Level 2 Software Block Diagram 

 

Tables 27-36 outline each section of the Level 2 Software Block Diagram. Beginning 

with the first step of arming the system to the last step of deploying the rescue device, this set of 

tables details all of the steps taken for tracking the splash location and moving the robot there. 

Tables 27-32 focus on the tracking of the splash location once a child has fallen into the pool. 

Lastly, Tables 33-36 focus on the movement of the robot and deployment of the rescue device.  

 

 

 

 



36 

Module System Armed? 

Designer Kelly O’Neill and Parsa Bayat 

Inputs External Switch Signal (High or Low) 

Outputs Yes, No 

Functionality If Yes (armed switch activated), signal sent to arm/prepare robot. 

Table 27 

 

Module Microphone Input? 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Analog waveform 

Outputs Yes, Microphone Data, No 

Functionality If yes, alarm will be activated and microphone data will be sent. If 

no, stay in loop. 

Table 28 

 

Module Sound Alarm 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Yes 

Outputs Sound Data 

Functionality If yes, sound data for alarm is sent to amplifier. 

Table 29 

 

Module Amplifier 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Sound Data 

Outputs Amplified Sound 

Functionality Increases gain to amplify sound data 

Table 30 
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Module Determine Location 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Microphone Data 

Outputs Location Data 

Functionality Function that uses the microphone data to determine the location of 

of the object in the pool 

Table 31 

 

Module Compare to Area 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Location Data 

Outputs Square Location 

Functionality Compares the location data to predetermined areas and picks the 

“square” that the location data resides in. 

Table 32 

 

Module Determine Duration for Propeller Motor 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Square Location 

Outputs Power Motor, Duration 

Functionality Determines how long the motor should be powered on based on the 

square determined in the previous function 

Table 33 
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Module Propeller Motor 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Power Motor, Deactivate Propeller Motor 

Outputs Motor Rotation 

Functionality Turns on or off motor based on desired duration 

Table 34 

 

Module Has Time Expired? 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Duration 

Outputs No, Yes, Deactivate Propeller Motor 

Functionality Constantly checks if the time has expired. Sends Deactivate Motor 

Signal and Deploy Raft Signal when the time has expired 

Table 35 

 

Module Deploy Raft 

Designer Kelly O’Neill and Parsa Bayat 

Inputs Yes 

Outputs Deploy Raft 

Functionality Sends a signal to the hardware to deploy the raft 

Table 36 

 

 

 

 

 

 

 

 

 



39 

 

Mechanical Sketch of System [TD] 

 

S.A.V.E. M.E. is being designed for a 3 meter by 3 meter pool. On the bottom of the 

pool, there will be a 2 meter by 2 meter track. The size of the track was chosen based off of 

several factors including research shows that children that fall in the pool stay near the sides and 

the rescue device having a minimum surface area of 1m2 The underwater robot will be guided 

along the bottom of the track by a wheel or roller. The robot will move forwards and backwards 

via underwater propellers. Lastly, the rescue device will be tethered to the robot and released 

when the robot arrives at the splash location. A simple mechanical design of the system can be 

seen in Figures 6 and Figure 7.  

 

  
Figure 6: Isometric View 
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Figure 7: Side View 
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Engineering Analysis 

Mechanical Design of the Track [TD]:  

 

The track will be either built in the University of Akron machine shop or purchased from 

an industrial curtain supplier. For the design of the track, an “I” beam configuration was chosen. 

As specified in the design requirements, the pool is to be 3 meters by 3 meters and the track is to 

be 2 meters by 2 meters. This size was chosen due to research showing that when children fall in 

the pool they stay relatively close to the edge. The track will be comprised of 4 sections of 

straight pieces of track and 4 rounded corners so that the robot can easily make turns underwater. 

The corner pieces were designed to be 0.6096 meter (2 feet) radius at a 90° angle. The 4 straight 

pieces were designed to be 1.3 m in length. With this sizing design for the corner and straight 

pieces, each side will be in total 2 meters (6.5 feet) which can be seen in the figures below.  

 

 
Figure 8: Top View of the Track 
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To guide the robot along the track a wheel carrier will be attached to the bottom of the 

robot. The “I” beam configuration that the wheel carrier will move through was designed to be 

50.88 mm in width and 35 mm in height. These sizes were chosen based off standard industrial 

“I” beam designs that are able to be purchased if needed.  

 

 
 

Figure 9: Cross Sectional View of the Track 

 

 

Shown below in Figure 10, is a drawing of the robot attached to the wheel carrier inside 

the track. 
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Figure 10: Robot & Wheel Carrier Cross Sectional View 

 

Lastly, the track will be made out of metal, ideally steal. The robot moving along the 

track can be seen below in Figure 11.  

 

 
Figure 11: Robot Along the Track 
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Underwater Movement [TD]: 

The robot will be guided by a roller along the track, but it will be propelled forwards and 

backwards by an underwater thruster. The thruster will be powered by 12V DC by the robot side 

battery pack. The max current draw of the thrusters is 25A and at max current it can push 7.8lbs 

of force. The thrusters were donated from Blue Robotics.  

 

Robot Enclosure [TD]: 

Per the design requirements, the system needs to be waterproof. For this an underwater 

enclosure was chosen based off of the required dimensions needed to hold the robot battery and 

PCB boards.  

 

Raft Design [AD]:  

To design the size of the raft that will lift the drowning child above the surface of the 

water, research needed to be done on the intended user of the device. The system is designed to 

save young children in the age range of 1-4 years old. The height of an average American toddler 

can range anywhere from 0.7 meters to right under 1 meter. Based on this information, the raft is 

designed to have a minimum surface area of 1m2 so that it can be large enough to hold and lift up 

a child this size. The raft needs to be able to be submerged underwater while the robot is moving 

along the track to the splash location and easily rise and float above the surface of the water 

when performing a rescue. To meet this criteria, the raft will be made of the material 

polyethylene or styrofoam, which has a density less than water. 

The buoyancy force of the raft needed to be calculated by using 𝐹𝑏 = 𝜌𝑔𝑉where 𝜌is the 

density of the liquid, which is 1000
𝑘𝑔

𝑚3
, 𝑔 = 9.81

𝑚

𝑠2
and V is the volume displaced is 
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For a 1𝑚 ∗ 1𝑚 ∗ .0508𝑚, 𝑉 = .0508𝑚3and therefore 𝐹𝑏 = (
1000𝑘𝑔

𝑚3
) (

9.81𝑚

𝑠2
) (. 0508𝑚3) =

498.348𝑁 ∼ 112𝑙𝑏 − 𝑓 

Recognizing the need to take away some of the force, 36, 4in holes will be cut in the raft 

material, reducing the buoyancy force significantly.  

The volume of each cylindrical cutout will be 𝑉 = 𝜋𝑟2ℎ = 𝜋(.0508)2(.0508) = 4.11851839 ∗

10
−4𝑚3. For 36 holes, the volume taken out would be 𝑉ℎ𝑜𝑙𝑒𝑠 = .0148266662𝑚3resulting in 

𝑉𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑,𝑛𝑒𝑤 = .0508𝑚3 − .0148266662𝑚3 = .0359733338𝑚3 

The new buoyancy force would be 𝐹𝑏 = (
1000𝑘𝑔

𝑚3
) (

9.81𝑚

𝑠2
) (. 0359733338𝑚3) = 352.898𝑁 ∼

80𝑙𝑏 − 𝑓 

Therefore, the single cable attached to the robot must have a greater force pull down of 353N. 

 

Raft Release [TD]: 

The raft is going to be tethered to the robot via four cables. To release the cables and 

elevate the rescue device a pinch solenoid will be used. The solenoid will be powered by the 12V 

DC battery pack inside the robot. An explanation of the drive circuitry is explained in further 

detail in the alarm and solenoid engineering analysis and in figure 26.  

 

 

 

 

Tracking [PB]: 

 

One of the requirements for the device is to be able to determine the location of a person 

falling into the pool. In order to do this, a microphone array will be mounted to the robot. When 

someone falls into the pool, the sound of the splash will travel to the array. Using the known 
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value of sound propagation, the location of the splash can be determined. In order to calculate the 

location, the pool will first be converted to a coordinate system. For our purposes, the coordinate 

grid will be created based off of a 3 meter by 3 meter pool with a depth of 5 meters. Each unit on 

the grid will represent 1 centimeter on the actual pool. One of the microphones on the robot will 

be positioned at the origin of the pool to make the calculations simpler. The default position of 

the robot will be 500 centimeters south from the middle of the pool. This creates a coordinate 

grid with an x-axis range of -1500 to 1500, a y-axis of -500 to 2500, and a z-axis of 0 to 3000.  

The time it takes for an object to reach one point to another can be represented by the 

equation 𝑡 =  
1

𝑣
√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2where v is the velocity of the object, x and y are the 

starting position of the object, and x0 and y0 are the ending position. For the calculations, v  will 

represent the speed of sound in water (0.1498 cm/us),  x0, y0, x1, y1, x2, y2, x3 and y3 will represent 

the locations of the microphones, and x and y will represent the location of the splash.  

 

 

 

 

 

 

 

 

 

● Note that in the equation for t0, the values of x0 and y0 can be removed because 

the first microphone resides at the origin. 

Using the above equations, a system of equations can be created by subtracting the values of t by 

each other. For simplicity, all of the equations will be subtracted by the first equation. From this 

the following equations are derived: 
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The Δt values will be the “real world” values that are obtained by the microphones. When 

a microphone hears the splash, a timer will be stopped. The timers will all be subtracted by each 

other to get their respective Δt values. Substituting in the Δt values, the value of the speed of 

sound in water, and the location of the microphones on the axis, the above system of equations 

can be solved for x and y. These values will represent the position of the splash on the coordinate 

grid. 

 

 

Pseudocode [PB]: 

 

Pseudocode for robot in pool: 

Start 

 

Set variable IR_arm_signal_from_microcontroller to false //This variable will be set to true when 

//a signal is received 

  

  

While IR_arm_signal_from_microcontroller is false 

{ 

             Nop;  //Nothing is done while no arming signal is sent to the robot 

} 

 

Run timer0 counter in background to count in nanoseconds 

Run timer1 counter in background to count in nanoseconds 

Run timer2 counter in background to count in nanoseconds 

Run timer3 counter in background to count in nanoseconds 

 

Set mic0 to false 

Set mic1 to false 
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Set mic2 to false 

Set mic3 to false 

Set mic input to false 

  

While (mic0 mic1 mic2 mic3 are all false) { 

             Get mic0 value from input         //interrupt routine 

If mic0 value is over the threshold, set mic0 to true, stop timer0 

  

             Get mic1value from input         //interrupt routine 

If mic1value is over the threshold, set mic1 to true, stop timer1 

  

             Get mic2value from input         //interrupt routine        

If mic2value is over the threshold, set mic2 to true, stop timer2 

  

Get mic3value from input         //interrupt routine 

If mic3value is over the threshold, set mic3 to true, stop timer3 

} 

  

Set alarm to true           //sound the alarm 

  

Set T1 equal to timer1 minus timer0      

Set T2 equal to timer2 minus timer0 

Set T3 equal to timer3 minus timer0 

  

Solve system of equations 

v = 1/0.1498;                    //speed of sound underwater 

  

x1 = -18;   //location of mic1 

y1 = 22; 

z1 = 0; 

  

x2 = 18; //location of mic2 

y2 = 22; 

z2 = 0; 

  

x3 = -18;   //location of mic3 

y3 = 0; 

z3 = 0; 

  

//equation 1 
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eq1 = (v)*((sqrt(((x-(x1))^2)+((y-(y1))^2 +((z-z1)^2)))-(sqrt((x^2)+(y^2)+(z^2)))))==T1; 

  

//equation 2 

eq2 = (v)*((sqrt(((x-(x2))^2)+((y-(y2))^2)+((z-z2)^2)))-(sqrt((x^2)+(y^2)+(z^2))))==T2; 

  

//equation 3 

eq3 = (v)*((sqrt(((x-(x3))^2)+((y-(y3))^2)+((z-z3)^2)))-(sqrt((x^2)+(y^2)+(z^2))))==T3; 

  

sol = solve([eq1,eq2,eq3],[x,y,z]); 

  

//set the solutions 

X = sol.x;           //set X’s value 

Y = sol.y;           //set Y’s value 

Z = xol.z;           //set Z’s value 

  

//Square0-7 all correspond to a specific section of the pool 

  

  

//Disregard Z value 

if ( X < -50){ 

             if (Y < 50) 

Square_Location = 7; 

             if (50 < Y < 150) 

                             Square_Location = 6; 

             if (150 < Y) 

                             Square_Location = 5; 

} 

else if ( -50 <  X < 50){ 

             if (Y < 50) 

Square_Location = 0; 

             if (50 < Y < 75) 

//This is the middle of the pool. The robot cannot physically move to this location. 

Square_Location = 0; 

             If (75 < Y < 150) 

If(X < 0) 

             Square_Location = 6; 

else if (X > 0) 

             Square_Location = 2; 

  

             if (150 < Y) 
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Square_Location = 4; 

} 

else if ( X > 50){ 

             if (Y < 50) 

Square_Location = 1; 

             if (50 < Y < 150) 

Square_Location = 2; 

             if (150 < Y) 

Square_Location = 3; 

} 

  

//Switch statement used to choose location  

Switch(Square_Location) 

{ 

             Case 0: Set propeller duration to get to square 0 

             Case 1: Set propeller duration to get to square 1 

             Case 2: Set propeller duration to get to square 2 

             Case 3: Set propeller duration to get to square 3 

             Case 4: Set propeller duration to get to square 4 

             Case 5: Set propeller duration to get to square 5 

             Case 6: Set propeller duration to get to square 6 

             Case 7: Set propeller duration to get to square 7 

} 

  

While(propeller duration != 0) 

{ 

             Turn on propeller motor 

} 

  

Turn off propeller motor 

Deploy raft 

  

Stop 

 

 

 

Pseudocode for microcontroller outside pool: 

Start 

  

Declare variable Arming_Switch                             //represents a physical switch 
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While Arming_Switch is false 

{ 

             Nop;  //Nothing is done while no arming signal is sent to the microcontroller 

} 

  

//loop will exit when an arming signal is received 

  

Send IR Signal to the Robot  //This signal will let the robot know that the system is armed 

      //and to start listening 

  

Set Alarm_Signal to false           //Alarm_Signal represents the signal that the robot will  

//send to the microcontroller to activate the alarm 

  

While Alarm_Signal is false 

{ 

             Nop;   //wait for Alarm_Signal from the robot 

} 

  

Sound alarm 

  

Stop 
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User Interface Rectifier and Regulator Circuit [TD]: 

To power the alarm and microcontroller used for arming the system once a child has 

fallen into the pool, a 12V DC source is needed. To do this a rectifier and 12V DC regulator 

circuit was designed which can be seen below in Figure 12. A transformer of 120 VAC to 20 

VAC was chosen to accommodate both the alarm circuit outside of the pool as well as the 

inductive charging unit and robot inside of the pool. Once the transformer was chosen, the 

rectifier and regulator circuit were able to be designed with the following calculations:  

 

First the peak voltage was calculated:  

 

1. 20 V rms = √2 ∗ 20 𝑉𝑟𝑚𝑠 =  28.28 𝑉𝑝𝑒𝑎𝑘 

 

Next the voltage drop due to 2 of the diodes was subtracted from Vpeak: 

 

2. 28.29 Vpeak - 0.7 V - 0.7 V = 26.89 V 

 

Then the DC voltage converted by the bridge rectifier circuit was calculated by: 

 

3. DC Voltage = 
2∗𝑉

𝜋
= 

2∗26 𝑉

𝜋
= 16.55 V DC 

 

4. Current rating of Alarm + microcontroller = 1 amp 

 

5. Max Current Rating = 1 amp * 2 (factor of safety) = 2 amps  

 

6. 𝑅2 (Alarm) =
12 𝑉𝐷𝐶

2𝑎𝑚𝑝𝑠
= 6 ohms 

 

Next a capacitor is needed that appears as a short to the AC ripple, to achieve that, the impedance 

of the capacitor must be smaller than or equal to one hundredth of the load: 

 

7. 𝑋𝐶 =  
6𝑜ℎ𝑚𝑠

100
= 0.06 ohms 

 

8. Frequency of a full wave rectifier, f = 120 Hz  
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9. 𝑋𝐶  =
1

2∗𝜋∗𝑓∗𝐶
 resolving for 𝐶 =  

1

2∗𝜋∗120 𝐻𝑧∗ 0.06Ω 
= 22,104 uF  
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Figure 12: User Interface Rectifier and Regulator Circuit  

 

 
Figure 13: Output Voltage Waveforms of Figure 12 

 

The top waveform is the output voltage waveform with respect to time of the rectifier 

circuit. The input voltage of the schematic is 20 VAC RMS which will be stepped down from a 

120V AC transformer. The input AC voltage is then converted to DC voltage via a bridge 

rectifier circuit. The capacitor, C1, then smooths out the full wave rectifier waveform and has an 

average DC value around 25 volts. 
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The bottom waveform is the output voltage waveform with respect to time of the 

regulator circuit. The regulator circuit takes the 20V DC and drops it down to the desired DC 

voltage, which for the alarm and user interface is 12 V DC. For the regulator circuit, an 

integrated circuit 12V DC voltage regulator will be used.  

 

Microphone Testing [KO]: 

 

To obtain necessary splash data for triangulation, microphones were needed to hear the 

splash. Based on the quality of microphone data obtained from a bench test, a microphone and 

the corresponding, appropriate filtering and sampling hardware was chosen.  

With the goal of testing this project eventually in either the University of Akron’s ONAT 

or leisure pool, a bench test environment was initially constructed using a ten gallon fish tank 

with a filter pump. The filter pump was used to represent a large pool pump and a splash in 

addition to keeping the water from becoming stagnant in the lab. 

In the bench test environment, three options for microphones were tested: an Andoer 

piezo contact microphone, a lapel microphone, and a Microseven M7WP-MIC waterproof 

outdoor microphone. Waveform data using each microphone was observed using an 

oscilloscope. From that data, a microphone was chosen for testing in the actual large pool 

environment.  

The Andoer piezo contact microphone performed very insufficiently as it senses audio 

vibrations through contact with solid objects. When simply placing the microphone suspended in 

the water, no splash could be detected. Even after placing the microphone up against the side of 

the fish tank, very little difference in the waveform due to the splash was detected. If this 

microphone would be chosen, an amplifier would be a necessity, and the microphone would need 
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to be mounted firmly to the body of the robot to sense the splash. However, with this option, 

there is concern as to whether a delay would be noticeable as the entire body of the robot would 

‘feel’ the splash vibration.  

The lapel microphone performed poorly. As this microphone is not waterproof, a balloon 

was secured around the head of the microphone before being placed in the tank for testing. No 

waveform difference was detected when testing this microphone. 

The best results came from the Microseven M7WP-MIC waterproof outdoor microphone. 

Initially the microphone was placed directly in the tank with the filter running. A waveform with 

positive amplitude in the 0.5 to 4V range was observed at the output. A splash was created by 

slapping the surface of the water and the waveform in Figure 14 was recorded on the 

oscilloscope. It can be seen that during the splash, there is saturation of the signal. While the 

splash is noticeable on an oscilloscope during a certain time frame, analysis of the amplitudes 

during the splash and calm time periods show the waveforms reach similar amplitudes. Because 

a distinct difference in amplitude is desired for the microcontroller to identify a splash, this was a 

large concern. 
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Figure 14:  Non-encased Microseven M7WP-MIC Microphone in Bench Test with Splash   

 

Some of the concerns identified prior to transitioning from the bench test to ONAT pool 

environment include the noise generated from the university pool pumps and the saturation of the 

waveform when the microphone is placed directly in the water. To address these concerns, the 

Microseven M7WP-MIC waterproof outdoor microphone was tested in the ONAT pool at the 

University of Akron both with the microphone encased in a waterproof container and placed 

directly in the water.  

The test was extremely successful. In both encasement situations, a splash was able to be 

heard on the surface from a minimum distance of 3m away when the microphone was submerged 

to the ONAT pool’s 5 ft depth. However, when encased, the microphone did pick up less 

extraneous noise from the pool pump, resulting in a more defined pulse.  
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Figure 15 depicts a surface splash created within 1m of the encased microphone. The 

peak amplitude of the pulse is approximately 7V which differs significantly from the sound 

heard from the pool pump which is less than 1V. 

 
Figure 15:  Encased Microseven M7WP-MIC Microphone  -  Splash less than 1m away 

 

 

Figure 16 depicts a splash created within 1m of the microphone when placed directly in 

the water. The peak amplitude of the splash is approximately 4V but as the pump noise has an 

amplitude of 2-3V it is much more difficult to distinguish the splash, specifically the initial 

instant the splash was heard.  
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Figure 16:  Non-encased Microseven M7WP-MIC Microphone  -  Splash less than 1m away 

 

 

This initial rise, or change in amplitude, is what will be examined for timing and 

triangulation analysis. Through this testing, it was decided that the Microseven M7WP-MIC 

waterproof outdoor microphone, when submerged at 5ft  and encased in a waterproof container, 

is a useable choice to hear a splash at the necessary distance for the defined 3m by 3m pool. The 

remainder of testing and analysis will be performed for an encased Microseven M7WP-MIC 

waterproof outdoor microphone. 

 

The testing in the ONAT was additionally conducted to obtain the frequency of the noise 

created by the pool pump so it can be filtered out. The waveforms in Figure 17 and Figure 18 
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below were utilized to see which frequencies need to be filtered out. Figure 17 depicts the sound 

heard by the microphone when no splash is occurring. An FFT, or a Fast Fourier Transform, 

analysis was conducted for the waveform. As the cursors do not show at what frequency the 

spike occurs, it is compared with Figure 18 which has identically 400 ms per division to 

determine that the frequency spike in Figure 17 occurs at 160Hz. Figure 18 shows the FFT 

analysis of a splash. A 160 Hz spike is clearly visible. It is difficult to identify the frequency of 

the splash from the waveforms as the amplitude compared to the frequency is minimal. 

 
Figure 17:  FFT Analysis of ONAT Pool Pump Noise  
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Figure 18:  FFT Analysis of ONAT Pool Pump Noise and Splash 

 

Therefore, by implementing a low pass filter that will filter out frequencies in the 150Hz 

to 170 Hz range, only the splash waveform data will be obtained and analyzed. In the next test of 

the microphones in the ONAT, this choice of filter will be tested and verified. 
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Band Stop Filter and Envelope Detector [KO]: 

 

From testing in the ONAT, it was determined that the 160Hz noise created by the pool 

pump needs filtered out. As this single frequency needs filtered out, a band pass filter, 

specifically a Twin-T Notch filter is chosen to be used as this type of filter is typically used to 

reject a specific frequency that is generating electrical noise. It provides a narrow, deep stop 

band around a specific notch frequency. With a desired cutoff off, or notch frequency of 160Hz, 

the below equation is utilized to determine values for R and C. 

𝑓𝑁  =  
1

4𝜋𝑅𝐶
 

160𝐻𝑧 =  
1

4𝜋𝑅𝐶
 

𝑅𝐶 =
1

4𝜋(160)
 ≈ 0.000497 

 

Choose R = 1.8kΩ, C = 0.27uF, 2R = 3.6kΩ, and 2C = 0.56uF 

 

This resistor and capacitor value is utilized for each of the four microphone input band stop filter 

circuits. 

 

To obtain the positive envelope of the band pass filtered analog waveform, a Schottky 

diode and RC delay are utilized. A Schottky diode is chosen as it has a low forward voltage drop 

which will allow for nearly the full range of analog voltage values to be sampled. Specifically for 

the CUS520,H3F Schottky diode chosen, the forward voltage drop is merely 280mV. The RC 

delay is utilized to minimize ripple and negative peak clipping. As the microcontroller will only 

be looking for the initial voltage amplitude increase of each microphone due to a splash, a 

greater emphasis is placed on minimizing ripple and very minimal emphasis on negative peak 

clipping. Thus, the time constant, τ, is chosen to be a large value, 10ms, and the resistor and 

capacitor is chosen accordingly. 
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𝜏 =  𝑅𝐶 

0.01 =  𝑅𝐶 

 

Choose R = 10kΩ and  C = 1uF 

 

This resistor and capacitor value is utilized for each of the four microphone input envelope 

detector circuits. Figure 19 depicts the filtering and envelope detecting circuit for all four 

microphones.  

 
Figure 19: Band Stop Filter and Envelope Detection Circuit Schematic 
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Analog to Digital Converter (ADC) [KO]: 

 

After passing each microphone waveforms through the low pass filter and envelope 

detector respectively, the waveforms are each sampled using an analog to digital converter 

(ADC) so data can be passed to the microcontroller for analysis.  

From the experimental tests conducted in the ONAT, the maximum amplitude of the 

splash waveform was observed to be around 7V, seen in Figure 15. As most ADCs are designed 

for 3.3V or 5V analog signals, an ADC needed to be found that could handle larger analog 

inputs. Additionally, as the converted digital data, typically in the range of 8-16 bits, from each 

of four microphones needs to be sent from the microcontroller for analysis a choice of whether 

the data should be sent in parallel, sending each bit to a pin individually, or using a 

communication protocol. As sending the data from four ADCs in parallel would require 32-64 

GPIO pins depending on the chosen ADC, it was decided that choosing an ADC that 

communicates with a specific protocol would significantly simplify PCB layout construction and 

speed up the microcontroller program analysis of the data. 

Texas Instruments’ ADS8664 analog to digital converter satisfies both of these 

determined component requirements. This ADC is rated for an absolute maximum of -20V to 

20V on the negative and positive analog signal input pins respectively. However, the input range 

is configurable as well based on a reference voltage. The internal reference voltage will be 

utilized and because the envelope detector will make the negative analog signal input be ground, 

the analog input range will be configured to 0 to 10.24V, or 0 to 2.5×Vref, where for the internal 

reference Vref = 4.096.  

This ADC additionally uses SPI, Serial Peripheral Interface, to communicate. A unique 

configuration with this ADC is available for SPI that allows for daisy chaining of the serial data 
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out (SDO) pins. This allows for the same synchronous clock to drive each ADC, resulting in 

synchronous data sampling of the four microphones and a collective data pulse stream being sent 

to the microcontroller. A single SPI channel is required for this configuration as the same clock 

(SCLK), serial data in (SDI), and chip select (CS) pin from the microcontroller drives and 

configures all four ADCs. The four converters are depicted in Figure 20 where labels are utilized 

to daisy chain the data outputs of each ADC. 

 

 
Figure 20: Analog to Digital Converter Circuit Schematic for all Sampling 

 

 

The recommended decoupling capacitors are added identically for each converter 

according to the datasheet. The ADC circuit to sample the analog waveform originating from 

Microphone 1 is shown in Figure 21 using the Texas Instruments part ADS8664. This ADC is 

the beginning of the daisy chain with the DAISY pin grounded and the SDO pin single labeled 

SDO1 being fed into the DAISY pin of the ADC for the Microphone 2 data.  
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Figure 21: Analog to Digital Converter Circuit Schematic for Microphone 1 

 

 

 

 

IR Communication [KO]: 

 

To communicate the arm robot signal and activate alarm signal between the user interface 

and robot, IR LEDs are chosen to communicate these status signals. On the user interface, the 

armed switch status will be read by the microcontroller and will drive an IR LED to be read by 

the robot. On the robot microcontroller an IR receiver will be wired to receive the armed status. 

Mirroring this communication, an IR LED will be ‘ON’ continuously on the robot once armed. 

Upon hearing a splash, the robot moves away from the home station, the IR receiver wired to the 

user interface microcontroller will no longer read the IR LED. This change in status will activate 

the alarm outside the pool. Connectors for the IR LED and IR Receiver are connected to GPIO 

pins on each microcontroller as the transmitter and receiver will need to be in specific locations 

away from the mounted PCB respectively.  

A TSOP38238 IR receiver is chosen to interpret this signal. This package is a combined 

pin diode and sensor IC that amplifies, filters, and demodulates the input to bias a transistor that 

triggers an output pin accordingly. This output value will be read by a GPIO pin of the 
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microcontroller. The IR LED chosen is a 940nm LED, as the receiver has peak sensitivity at that 

wavelength. A three-pin connector is utilized for the receiver and a two pin connector is utilized 

for the IR LED.  

To limit the current draw from the IR LEDs, setting the desired continuous current to 

20mA results in the forward voltage drop across the LED to be 1.2V. A 200Ω resistor to limit the 

current to approximately 20 mA is chosen based on the below calculation 

 

𝑉𝑆,𝑚𝑖𝑐𝑟𝑜 = 𝑉𝐿𝐸𝐷 + 𝑉𝑅 

3.3𝑉 =  1.2𝑉 + (20𝑚𝐴)𝑅 

𝑅 =  105𝛺 

 

Choose R = 120Ω 

 

The circuits for the IR Communication elements are shown in the Figure 22 and Figure 23 circuit 

schematics for the user interface and robot respectively. The ALARM_OUT signal and 

ARMED_OUT signal connect to the user interface microcontroller and robot user interface 

respectively. 

 

 
Figure 22: IR Communication Circuit Schematic on User Interface 
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Figure 23: IR Communication Circuit Schematic on Robot 

 

 

Robot Microcontroller [KO]: 

 

The microcontroller for the robot was chosen based on several factors: necessary 

processing speed, necessary memory, number of SPI channels, and available peripheral for 

driving the propellers. From the constructed software model of a splash heard in a 3m by 3m 

swimming pool and using the tracking equations, it was determined that each tenth of a 

microsecond a timer value needs incremented to analyze the microphone data. This corresponds 

with a processor speed of 10 Mhz. Therefore, as initial component selection requirement, the 

processor has to run at a minimum of 10 Mhz. The software library containing the tracking and 

triangulation equations is very large so a processor with a large memory is required. As initially 

four ADC converters were to be utilized, each requiring its own channel, a processor with at least 

four SPI peripheral channels is chosen. With a preference to utilize a Microchip PIC processor, 

the PIC32MK1024MCF064-I/PT was chosen. At the time the microcontroller was chosen, it was 

unclear which propeller would be utilized and which could possibly be donated. With that in 

mind this processor was additionally chosen for the Motor Control PWM Driver peripherals.  

 

From the datasheet, the appropriate decoupling capacitors, programming pins, and reset 

circuitry was determined and chosen. With the daisy chaining of the ADCs, a single SPI channel 
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is utilized and the clock, slave select, serial data in, and serial data out are connected to the 

appropriate peripheral pins of the processor.  

The IR LED is driven from a GPIO pin and the IR receiver feedback is read by another 

GPIO pin. The PWM signal required by the propeller ESCs are driven from GPIO pins as well. 

For testing, the eight pins of Port A are broken out to a debug header and eight pins of Port B are 

broken out to eight debug LEDS.  

 
Figure 24: Robot Microcontroller Circuit Schematic 

 

 

User Interface Microcontroller [KO]: 

For simplicity, the same microcontroller is chosen to be utilized for the user interface. The same 

decoupling capacitors, programming pins, debug header and LEDs, and reset circuitry is present. 

A connector for the arming switch and supporting circuitry similar to the reset switch of the 

microcontroller is used. Figure 25 depicts the circuit schematic constructed for the user interface. 
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Figure 25: User Interface Microcontroller Circuit Schematic 

 

 

Alarm and Solenoid Drive Circuitry [KO]: 

 

To drive the alarm on the user interface and the solenoid on the robot, a low side switch using an 

N-Channel MOSFET is implemented. A low side switch was chosen to be utilized rather than a 

high side switch so that it can be activated using the voltage output from one of the 

microcontroller’s GPIO pins. When not driven from the GPIO, a resistor from the gate to ground 

pulls the MOSFET gate low so that it is not floating. Two resistors create a voltage divider that 

will provide the gate of the MOSFET 1.8V. These resistor values were chosen to provide a 

voltage greater than the gate threshold of the chosen MOSFET which is 1.5V.  Figure 26 depicts 

the drive circuitry specifically for the user interface alarm, but the identical schematic and part 

numbers are implemented on the robot schematic for driving the solenoid. 
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Figure 26: Alarm Drive Circuitry Schematic 

 

 

 

Power Supply (5V and 3.3V) [KO]: 

 

As the analog supply of the ADC and IR communication utilizes a 5V input and the 

microcontroller and digital supply of the ADC utilize a 3.3V input, two voltage regulators are 

required to step down the 12V DC input on for both the robot and user interface. A switching 

regulator is chosen to step down the 12V to 5V, and a linear regulator is chosen to step down 5V 

to 3.3V. Based on the total current draw by the various component as can be seen explicitly in 

Table #, the 3.3V linear regulator would need to be rated for at least 202mA. Adding a factor of 

safely, a 3.3V 1A rated linear regulator, AP2114HA-3.3TR was chosen to be utilized. The 

schematic shown in Figure # below depicts this component and the two 1uF decoupling 

capacitors required on the input and output as identified by the datasheet. 



72 

  
Figure 27: 3.3V Linear Regulator Circuit Schematic 

 

Based on the maximum current draw as described in Table 38 below, a 5V switching 

regulator would need to be rated for at least 300mA and be able to take 12V as an input. The 

LM2575 buck converter is chosen. For design purposes and adding a factor of safety, a input 

voltage of 13V and current of 500mA is chosen to design the four additional components 

necessary. To prevent large voltage transients at the input, a 100uF aluminum electrolytic bypass 

capacitor is chosen to protect the input. A 3A Schottky diode is chosen as the catch diode, which 

is sufficient to handle the 1A maximum output of the regulator. Using the inductor selection 

guide in the LM2575 datasheet and the maximum input voltage and load current values, a 470uH 

inductor value is chosen. Using this inductor value, the maximum peak inductor current is 

calculated, 

𝐼𝑃𝑚𝑎𝑥 = 𝐼𝐿𝑜𝑎𝑑,𝑚𝑎𝑥 +  
(𝑉𝑖𝑛𝑉𝑜𝑢𝑡)𝑡𝑜𝑛

2𝐿
    

where   𝑡𝑜𝑛 =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛 (𝑓𝑜𝑠𝑐)
 =  

5

13 (52𝑘𝐻𝑧)
=   7.4 𝑢𝑠  

𝐼𝑃𝑚𝑎𝑥 =  (500𝑚𝐴) +  
(13)(5)(7.4𝑢𝑠)

2(470𝑢𝐻)
    

𝐼𝑃𝑚𝑎𝑥 =  1.01 𝐴    

 

From this, the SRR1210A-471M inductor which is rated for 1.2A is chosen for the 

application. To minimize output ripple voltage, the below equation is utilized to calculate the 

minimum output capacitance value required.  
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𝐶𝑜𝑢𝑡 ≥ 7.785 
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡 (𝐿 [𝑢𝐻])
 

𝐶𝑜𝑢𝑡 ≥ 7.785 
13

5 (470)
 

𝐶𝑜𝑢𝑡 ≥  43𝑢𝐹 

 

 

A 100uF aluminum electrolytic capacitor is chosen for the design. The 5V switching 

regulator circuit used for both the robot and user interface is shown in Figure 28. 

 

 
Figure 28: 5V Switching Regulator Circuit Schematic 
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System Power Consumption Analysis 

Power consumption for the various components and subsystems totals for the robot and the user 

interface were calculated and recorded in Table 37 and 38 respectively.  

 

Robot Power Consumption 

Component Max Current 

Draw  

Voltage  

(V) 

Multiplier Power  

(W) 

Propeller 25A 12 1 300 

Raft Release 216mA 12 1 2.6 

Microphone 1mA 12 4 0.048 

IR LED 20mA 5 1 0.1 

IR Receiver 3mA 5 1 0.015 

ADC Analog 11.5mA 5 4 0.23 

ADC Digital 0.5mA 3.3 4 0.0066 

Microcontroller 200mA 3.3 1 0.66 

Total 303.66 W 

Table 37: Robot Power Consumption 
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User Interface Power Consumption 

Component Max Current 

Draw  

Voltage  

(V) 

Multiplier Power  

(W) 

Alarm 1A 12 1 12 

IR LED 20mA 5 1 0.1 

IR Receiver 3mA 5 1 0.015 

Microcontroller 200mA 3.3 1 0.66 

Total 12.775 W 

Table 38: User Interface Power Consumption 
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Inductive Charging Design [AD]: 

First, picking out a battery to be able to provide the durability and high current required 

for the BlueRobotics propellers, a 12V, 10Ah sealed lead acid battery was chosen. In order to 

charge the battery pack in the robot while avoiding cables connecting to the robot underwater, 

the battery pack will be charged using inductive charging. An inductive charger is comprised of 

two coils with the ground side coil taking the AC wall voltage of 120V/60Hz which will be fed 

to a transformer to drop down the voltage to a desired voltage. It is then fed to the primary coil 

where an electromagnetic field induces a current in the secondary coil. The current is then fed 

through a rectifier circuit to convert the current to DC to charge the 12V battery pack. An AC to 

DC rectifier will be used to take the voltage of the secondary coil and convert it to approximately 

12-14V DC. As batteries have a normally fully charged voltage of 14V, there is a need to keep 

the voltage level higher than the nominal 12V. Therefore, for simulation purposes the schematics 

included the components to provide a regulated 12V to the battery, however, when moving 

forward with the PCB board design, a 15V regulator IC will be used. 

For this application the system requires a 120VAC to 24VAC transformer to come from 

the wall and go to the ground side coil. The ground side coil will induce a current in the vehicle 

side coil where it will be rectified to DC and regulated to slightly above 12V to be supplied to 

the battery pack. The AC/DC rectifier and 12V DC regulator circuit that is needed is shown in 

Figure 29. Working backwards, the sealed lead acid battery was going to be estimated for 12V 

and 10A capability, and the AC voltage needed on the vehicle side coil was needed to be 

calculated. To determine the peak voltage that must be present to charge the battery, the 

uncontrolled full wave rectifier equation was used of 𝑉𝐷𝐶 =
2∗𝑉𝑚

𝜋
. Solving for the peak voltage 

with 𝑉𝑚 =
12∗𝜋

2
 yielded ~18.85V. Including a factor of safety, the 18.85V was rounded to 24V to 
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accommodate for the losses across the diodes and other components. The components to make 

up the regulator circuit were modified from the DC Regulator for the User Interface in order to 

suit the needs of the battery pack. 

 

Figure 29: AC/DC Rectifier and Regulator Inductive Charging 

 

Figure 30: Waveforms of Rectifier and Regulator Inductive Charging 

 In Figure 30, the green waveform is the 24V sinusoidal input expected from the 

secondary coil, the blue waveform is the output of the diode bridge at the node with the 

capacitor, C1, and the red waveform is the voltage seen at the node of C3 after it has passed 

through the 12V voltage limiting circuit. 

Expanding the schematic to include the vehicle and ground side coils, it was determined 

that with 24V coming out of the wall transformer, a 1:1 turn ratio was needed to keep roughly 
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24V on the vehicle side, accounting for losses along the circuit. Turns ratio was simply 

𝑇𝑢𝑟𝑛𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑝

𝑉𝑠
=

20𝑉

20𝑉
= 1. Choosing a receiving coil inductance of 10uH, the transmitting 

coil would also have to be 10uH. The length of wire that would run from the ground side coil to 

the transformer that was plugged into the wall was estimated to need to be 15ft with a factor of 

safety thrown in. For design purposes the resistance of the wire needed to be factored in. 𝑅 = 𝜌
𝑙

𝑎
 

where ⲣ is the resistivity of the material, l is the length of the wire in meters, and a is the cross-

sectional area in mm2. The resistivity of copper is 1.6*10-8Ωm, using 12 gauge wire due to the 

current that it can handle is 20 amps, the cross sectional area of the wire is ~3.31mm2. Therefore, 

𝑅 = (1.6 ∗ 10
−8𝛺𝑚) ∗

4.572𝑚

3.31𝑚𝑚2
= .0221𝛺.  

Currently after the step-down transformer and the AC/DC rectifier, seen in Figure 31 produces 

the waveform of a constant 23V DC that is seen in Figure 32, which will then be fed through the 

inverter or a power oscillator in order to feed the ground side coil an AC signal. 

 

 

 

 

 

 

Figure 31:AC/DC Rectifier 
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Figure 32: Output of the AC/DC Rectifier 

Due to the high current on the primary side coil, the 24V from the stepped down 

transformer was sent through a AC/DC rectifier and then fed through a high frequency switch to 

get the waveform back to AC for the primary side coil. Limiting the current to be about 5A and 

with 20V, the impedance on the primary side must be equal to 4Ω. Using 𝑍𝑝 = 𝑅5 + 𝑗(2𝜋𝑓)𝐿8, 

4 = .0221 + 𝑗 ∗ 2𝜋 ∗ 10𝜇𝐻 ⇒ 𝑓 = 63661𝐻𝑧Therefore the period parameter for switching would 

be 𝑇 = 15.708𝜇𝑠 ∼ 16𝜇𝑠and 𝑇𝑜𝑛 =∼ 8𝜇𝑠for a duty ratio of 0.5.Another possibility for charging 

that is being pursued is Inductive Resonance Charging that would utilize the idea of trickle 

charging as it does not provide much power to the battery, which would keep the battery 

constantly at its voltage. Resonant frequency can be calculated using the equation 𝑓 =

1

2𝜋∗√𝐿𝐶
where the inductance will be the 10uH from the ground side coil. A 24V center tapped 

transformer and power oscillator could be used in the circuit, a low power DC/AC inverter, or 

DC/AC Sinusoidal H bridge inverter. The inverter would output a square wave that could be 

filtered and smoothed to resemble a sinusoidal wave. For now the current schematic after the 

120VAC to 24VAC step down transformer is seen in Figure ##. 

 

Figure 33: Charging Schematic After Step Down Transformer 
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Parts Lists 

Parts List [PB, TD, AD, KO]] 

 

Parts List- Track 

Quantity Part 

Number 

Reference Designator Description 

4 N/A N/A Industrial Curtain Track 

4 N/A N/A Curved Roller Tracks with 
90 Degree 24" Radius 

 

1 N/A N/A Nylon Roller Wheel 
Trolley 

 

Table 39: Track Parts List 

 

Parts List- Underwater Movement  

Quantity Part Number Reference 

Designator 

Description 

2 T200-ESC N/A Thruster 

Operating Voltage: 6-24 V DC 

Max Current: 25 A 

Max Power: 350 W 

With Electronic Speed 

Controller 

Table 40: Underwater Movement Parts List 
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Parts List- Underwater Robot Enclosure 

Quantity Part Number Reference Designator Description 

1 Underwater 

Container 

N/A Underwater Container 

 

Cabela’s 

 

Length: 0.3556 m (14 inches) 

Width: 0.2286 m (9 inches) 

Height: 0.127 m (5 inches) 

Table 41: Underwater Robot Enclosure Parts List 

 

 

Parts List- Rescue Raft 

Quantity Part Number Reference Designators Description 

1 Joann’s ITEM # 

5762182 

N/A Length:18” 

Width:12” 

Height: 2” 

Table 42: Rescue Raft Parts List 

 

 

Parts List- Raft Release 

Quantity Part Number Reference Designators Description 

1 EW-98302-02 N/A Pinch Solenoid 

Cole-Parmer Two-way 
normally closed 
solenoid pinch valve; 12 
VDC, 1/16" ID x 1/8" 
OD tubing 

 

Table 43: Raft Release Parts List 
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Parts List- User Interface Rectifier & Regulator Circuit  

Quantity Part Number Reference 

Designators 

Description 

1 F-259U XFMR  V1 Power Transformer  

Primary: 120 VAC 

Secondary: 20 V AC RMS 

4 RR601BM4S D2,D3,D4,D5 Rectifier Diode 

Breakdown Voltage: 400 V 

I = 6 A 

1 1189-2885-ND C1 22,000uF Capacitor 

Voltage Rating: 35 V 

2 ECA-1HM101B C2, C3 100uF Capacitor 

Voltage Rating: 50 V 

1 ALSR5F-150-ND R1 150Ω Resistor 

Power: 5 W 

1 2N3055 Q1 NPN Transistor 

𝑉 𝐶𝐸𝑂  = 60 𝑉 

𝐼 𝐶  = 10 𝐴 

1 UMZ13K D1 Zener Diode 

Breakdown Voltage: 13 V 

1 MP502W-BPMS-

ND 

D2,D3,D4,D5 Bridge Rectifier 

Forward bias Voltage: 1.2 V @ 20 A 

I average = 2 A 

Reverse Bias Voltage: 200 V 

1 MC7812BDTRK

GOSCT-ND 

R1, C2, D1, 

Q1 

Regulator 

 

IC REG LINEAR 12V 1A DPAK 

 

Table 44: User Interface Rectifier & Regulator Circuit Parts List 
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Parts List - Robot Microcontroller and Microphone Circuitry  

Qty. Part Num. Refdes Description 

4 M7WP-MIC N/A 

Microseven M7WP-MIC waterproof 

outdoor Microphone for M7B77-POE 

1 

PIC32MK1024MCF064T-

I/PT U1 

IC MCU 32BIT 1MB FLASH 

64TQFP 

1 RS-187R05A2-DS MT RT S1 

SWITCH TACTILE SPST-NO 

0.05A 12V 

1 SI2300DS-T1-GE3 Q1 MOSFET N-CH 30V 3.6A SOT-23 

4 ADS8664IDBT U3, U4, U5, U6 

IC ADC 12BIT 500KSPS 4CH 

38TSSOP 

4 CUS520H3FCT-ND D1, D2, D3, D4 DIODE SCHOTTKY 30V 200MA 

1 AP2114HA-3.3TRG1 U2 IC REG LINEAR 3.3V 1A SOT223 

1 LM2575-5.0WU IC1 IC REG BUCK 5V 1A TO263-5 

1 SRR1210A-471M L1 

FIXED IND 470UH 1.2A 820 

MOHM 

2 UWT1V101MCL1GS C23, C24 CAP ALUM 100UF 20% 35V SMD 

1 B340-13-F D5 DIODE SCHOTTKY 40V 3A SMC 

1 TSOP38238 N/A 

IC IR RCVR MOD 38KHZ DOME 

RADIAL 

1 IR333-A N/A 

EMITTER IR 940NM 100MA 

RADIAL 

22 CL21B105KAFNFNE 

C1, C2, C3, C4, C5, 

C7, C8, C11, C12, 

C14, C16, C19, C20, 

C21, C27, C28, C29, 

C33, C34, C35, C39, 

C40, C41 CAP CER 1UF 25V X7R 0805 

8 C2012X7R1A106K125AC 

C17,C22, C25, C30, 

C31, C36, C37, C42 CAP CER 10UF 10V X7R 0805 

4 CL21A226KPCLRNC C18, C26, C32, C38 CAP CER 22UF 10V X5R 0805 

4 C0805C564K4RACTU C13, C44, C47, C50 CAP CER 0.56UF 16V X7R 0805 
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8 CC0805KRX7R7BB274 

C9, C10, C15, C43, 

C45, C46, C48, C49 CAP CER 0.27UF 16V X7R 0805 

1 885012207045 C6 CAP CER 0.1UF 16V X7R 0805 

1 RC0805FR-071KL R2 RES SMD 1K OHM 1% 1/8W 0805 

13 RC0805FR-0710KL 

R1, R5, R6, R7, R8, 

R9, R10, R11, R12, 

R13, R14, R16, R18 RES SMD 10K OHM 1% 1/8W 0805 

1 RC2012F121CS R20 RES SMD 120 OHM 1% 1/8W 0805 

1 RC2012F272CS R3 

RES SMD 2.7K OHM 1% 1/8W 

0805 

1 KTR10EZPF3301 R4 

RES SMD 3.3K OHM 1% 1/8W 

0805 

8 RC0805FR-073K6L 

R17, R21, R23, R24, 

R26, R27, R31, R32 

RES SMD 3.6K OHM 1% 1/8W 

0805 

4 RC0805JR-071K8L R15, R22, R25, R28 

RES SMD 1.8K OHM 5% 1/8W 

0805 

8 150080GS75000 

LED1, LED2, LED3, 

LED4, LED5, LED6, 

LED7, LED8 LED GREEN CLEAR 0805 SMD 

1 4-103747-0 J1 6pos 0.1in header 

6 22-23-2031 

J7, J8, J9, J10, J14, 

J15, J16 3pos 0.1in locking header 

3 22-23-2021 J2, J3, J13 2pos 0.1in locking header 

1 4-103747-0 J8 8pos 0.1in header 

6 22-01-2037 N/A 3pos 0.1in locking housing 

3 22-01-2027 N/A 2pos 0.1in locking housing 

24 08-50-0114 N/A 0.1in locking housing crimp 

Table 45: Robot Microcontroller and Microphone Circuitry Parts List 
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Parts List  -  User Interface Microcontroller and Alarm Circuitry 

Qty. Part Num. Refdes Description 

1 a12092100ux0067 N/A 

Continuous Sound Alarm Buzzer 6-

24VDC 100dB 

1 

PIC32MK1024MCF064T-

I/PT U1 

IC MCU 32BIT 1MB FLASH 

64TQFP 

1 

RS-187R05A2-DS MT 

RT S1 

SWITCH TACTILE SPST-NO 

0.05A 12V 

1 SI2300DS-T1-GE3 Q1 MOSFET N-CH 30V 3.6A SOT-23 

1 AP2114HA-3.3TRG1 U2 IC REG LINEAR 3.3V 1A SOT223 

1 LM2575-5.0WU IC1 IC REG BUCK 5V 1A TO263-5 

1 SRR1210A-471M L1 

FIXED IND 470UH 1.2A 820 

MOHM 

2 UWT1V101MCL1GS C23, C24 CAP ALUM 100UF 20% 35V SMD 

1 B340-13-F D5 DIODE SCHOTTKY 40V 3A SMC 

1 TSOP38238 N/A 

IC IR RCVR MOD 38KHZ DOME 

RADIAL 

1 IR333-A N/A 

EMITTER IR 940NM 100MA 

RADIAL 

7 CL21B105KAFNFNE 

C1, C2, C3, C4, C5, 

C7, C8 CAP CER 1UF 25V X7R 0805 

2 885012207045 C6, C9 CAP CER 0.1UF 16V X7R 0805 

2 RC0805FR-071KL R2, R14 RES SMD 1K OHM 1% 1/8W 0805 

10 RC0805FR-0710KL 

R1, R5, R6, R7, R8, 

R9, R10, R11, R12, 

R13 

RES SMD 10K OHM 1% 1/8W 

0805 

1 RC2012F121CS R19 RES SMD 120 OHM 1% 1/8W 0805 

1 RC2012F272CS R3 

RES SMD 2.7K OHM 1% 1/8W 

0805 

1 KTR10EZPF3301 R4 

RES SMD 3.3K OHM 1% 1/8W 

0805 

8 150080GS75000 

LED1, LED2, LED3, 

LED4, LED5, LED6, LED GREEN CLEAR 0805 SMD 
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LED7, LED8 

1 4-103747-0 J1 6pos 0.1in header 

1 22-23-2031 J11 3pos 0.1in locking header 

4 22-23-2021 J2, J3, J5, J12 2pos 0.1in locking header 

1 4-103747-0 J8 8pos 0.1in header 

4 22-01-2037 N/A 3pos 0.1in locking housing 

1 22-01-2027 N/A 2pos 0.1in locking housing 

11 08-50-0114 N/A 0.1in locking housing crimp 

Table 46: User Interface Microcontroller and Alarm Circuitry Parts List 

 

 

Parts List- Inductive Charging 

Qty Part Number Reference Designators Description 

1 SLAA12-10F2 V5 Duracell Ultra 12V 

10AH AGM SLA 

Battery with F2 

Terminals 

2 KTJ250B107M76BFT00 C5, C6 100µF ±20% 25V 

Ceramic Capacitor 

X7R Stacked SMD, 2 

J-Lead 

1 EEU-TP1V202SB C4 CAP ALUM 2000UF 

20% 35V RADIAL 

1 22R476MC L9 FIXED IND 47MH 

33MA 154 OHM 

SMD 

1 ZLLS2000TA D18 DIODE SCHOTTKY 

40V 2.2A SOT23-6 

1 2SD2656T106 Q2 TRANS NPN 30V 

1A SOT-323 

1 ESR10EZPF1001 R8 RES SMD 1K OHM 

1% 0.4W 0805 
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1 UMZ18NT106 D17 DIODE ZENER 

ARRAY 18V 

200MW UMD3 

8 MBRB2545CTT4G D6, D16, D14, D15, D23, 

D25, D26, D24 

DIODE ARRAY 

SCHOTTKY 45V 

D2PAK 

1 760308201 L7 RX 1 COIL 1 

LAYER 10UH 4.5A 

1 760308141 L8 TX 1 COIL 1 

LAYER 10UH 9A 

1 860010781028 C10 CAP 2200 UF 20% 

63 V 

1 TCT40-01E07K V7 XFRMR 

LAMINATED 40VA 

CHAS MOUNT 

1 IPT004N03LATMA1 M1 MOSFET N-CH 30V 

300A 8HSOF 

1 LM7815CT/NOPB Replacing Circuitry IC REG LINEAR 

15V 1A TO220-3 

2 GMK212BJ104KGHT Replacing Circuitry CAP CER 0.1UF 35V 

X5R 0805 

Table 47: Inductive Charging Parts List 
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Materials Budget 

 

Quant

ity Part Number Description 

Unit 

Cost Total Cost 

Donation 

Status 

      

      

User Interface Regulator and Rectifier Circuit   

1 

F-259U XFMR 

20V 10A 4X3X3 

Power Transformers 

Primary: 120 VAC 

Secondary: 20 V AC RMS $37.86 $ 37.86  

1 

MP502W-BPMS-

ND 

Bridge Rectifier 

Forward bias Voltage: 1.2 

V @ 20 A 

I average = 2 A 

Reverse Bias Voltage: 200 

V $4.88 $ 4.88  

1 

MC7812BDTRK

GOSTR-ND 

Regulator 

IC REG LINEAR 12V 1A 

DPAK $0.71 $ 0.71  

1 1189-2885-ND 

22,000uF Capacitor 

Voltage Rating: 35 V $5.10 $ 5.10  

1 ECA-1HM101B 

100uF Capacitor 

Voltage Rating: 50 V $0.39 $ 0.39  

      

      

Track   

4 N/A Industrial Curtain Track $14.50 $ 58.00 

Donation 

Requested 

4 N/A 

Curved Roller Tracks with 

90 Degree 24" Radius $67.75 $ 271.00 

Donation 

Requested 

1 N/A 

Nylon Roller Wheel 

Trolley $2.50 $ 2.50 

Donation 

Requested 

      

      

Underwater Movement   
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2 T200-ESC 

Thruster 

Operating Voltage: 6-24 V 

DC 

Max Current: 25 A 

Max Power: 350 W 

With Electronic Speed 

Controller $194 $ 388.00 Donated 

      

      

Robot Enclosure   

1 

Underwater 

Container 

Underwater Container 

 

Cabelas 

 

Length: 0.3556 m (14 

inches) 

Width: 0.2286 m (9 inches) 

Height: 0.127 m (5 inches) $50.00 $ 50.00  

      

      

Rescue Raft   

4 

Joann’s ITEM # 

5762182 

2"x12"x18" Styrofoam 

Block-1PK/White $10.99 $ 43.96  

      

      

Raft Release   

1 EW-98302-02 

Pinch Solenoid 

Cole-Parmer Two-way 

normally closed solenoid 

pinch valve; 12 VDC, 

1/16" ID x 1/8" OD tubing $87.50 $ 87.50 

Permission 

to request 

donation 

pending. 

      

      

User Interface and Robot Microcontroller with Alarm and 

Microphone Circuitry   
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1 

a12092100ux006

7 

Continuous Sound Alarm 

Buzzer 6-24VDC 100dB $7.67 $ 7.67  

4 M7WP-MIC 

Microseven M7WP-MIC 

waterproof outdoor 

Microphone for M7B77-

POE 21.99 $ 87.96 

Donation 

Requested 

2 

PIC32MK1024M

CF064T-I/PT 

IC MCU 32BIT 1MB 

FLASH 64TQFP 7.54 $ 15.08  

2 

RS-187R05A2-

DS MT RT 

SWITCH TACTILE SPST-

NO 0.05A 12V 0.53 $ 1.06  

2 

SI2300DS-T1-

GE3 

MOSFET N-CH 30V 3.6A 

SOT-23 0.48 $ 0.96  

4 ADS8664IDBT 

IC ADC 12BIT 500KSPS 

4CH 38TSSOP 6.74 $ 26.96  

4 

CUS520H3FCT-

ND 

DIODE SCHOTTKY 30V 

200MA 0.22 $ 0.88  

2 

AP2114HA-

3.3TRG1 

IC REG LINEAR 3.3V 1A 

SOT223 0.37 $ 0.74  

2 LM2575-5.0WU 

IC REG BUCK 5V 1A 

TO263-5 2.34 $ 4.68  

2 

SRR1210A-

471M 

FIXED IND 470UH 1.2A 

820 MOHM 1.57 $ 3.14  

4 

UWT1V101MCL

1GS 

CAP ALUM 100UF 20% 

35V SMD 0.43 $ 1.72  

2 B340-13-F 

DIODE SCHOTTKY 40V 

3A SMC 0.39 $ 0.78  

2 TSOP38238 

IC IR RCVR MOD 38KHZ 

DOME RADIAL 1.12 $ 2.24  

2 IR333-A 

EMITTER IR 940NM 

100MA RADIAL 0.44 $ 0.88  

29 

CL21B105KAFN

FNE 

CAP CER 1UF 25V X7R 

0805 0.11 $ 3.19  

8 

C2012X7R1A106

K125AC 

CAP CER 10UF 10V X7R 

0805 0.52 $ 4.16  
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4 

CL21A226KPCL

RNC 

CAP CER 22UF 10V X5R 

0805 0.39 $ 1.56  

4 

C0805C564K4R

ACTU 

CAP CER 0.56UF 16V 

X7R 0805 0.81 $ 3.24  

8 

CC0805KRX7R7

BB274 

CAP CER 0.27UF 16V 

X7R 0805 0.35 $ 2.80  

3 885012207045 

CAP CER 0.1UF 16V X7R 

0805 0.1 $ 0.30  

3 

RC0805FR-

071KL 

RES SMD 1K OHM 1% 

1/8W 0805 0.1 $ 0.30  

23 

RC0805FR-

0710KL 

RES SMD 10K OHM 1% 

1/8W 0805 0.1 $ 2.30  

2 RC2012F121CS 

RES SMD 120 OHM 1% 

1/8W 0805 0.1 $ 0.20  

2 RC2012F272CS 

RES SMD 2.7K OHM 1% 

1/8W 0805 0.1 $ 0.20  

2 

KTR10EZPF330

1 

RES SMD 3.3K OHM 1% 

1/8W 0805 0.1 $ 0.20  

8 

RC0805FR-

073K6L 

RES SMD 3.6K OHM 1% 

1/8W 0805 0.1 $ 0.80  

4 

RC0805JR-

071K8L 

RES SMD 1.8K OHM 5% 

1/8W 0805 0.1 $ 0.40  

16 150080GS75000 

LED GREEN CLEAR 

0805 SMD 0.18 $ 2.88  

2 4-103747-0 6pos 0.1in header 0 $ - ECE Shop 

7 22-23-2031 3pos 0.1in locking header 0 $ - ECE Shop 

7 22-23-2021 2pos 0.1in locking header 0 $ - ECE Shop 

2 4-103747-0 8pos 0.1in header 0 $ - ECE Shop 

7 22-01-2037 3pos 0.1in locking housing 0 $ - ECE Shop 

7 22-01-2027 2pos 0.1in locking housing 0 $ - ECE Shop 

35 08-50-0114 

0.1in locking housing 

crimp 0 $ - ECE Shop 
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Inductive Charging   

1 SLAA12-10F2 

Duracell Ultra 12V 10AH 

AGM SLA Battery with F2 

Terminals $49.99 $ 49.99  

2 

KTJ250B107M76

BFT00 

100µF ±20% 25V Ceramic 

Capacitor X7R Stacked 

SMD, 2 J-Lead $7.29 $ 14.58  

1 

EEU-

TP1V202SB 

CAP ALUM 2000UF 20% 

35V RADIAL $3.94 $ 3.94  

1 22R476MC 

FIXED IND 47MH 33MA 

154 OHM SMD $0.89 $ 0.89  

1 ZLLS2000TA 

DIODE SCHOTTKY 40V 

2.2A SOT23-6 $0.92 $ 0.92  

1 2SD2656T106 

TRANS NPN 30V 1A 

SOT-323 $0.54 $ 0.54  

1 ESR10EZPF1001 

RES SMD 1K OHM 1% 

0.4W 0805 $0.17 $ 0.17  

1 UMZ18NT106 

DIODE ZENER ARRAY 

18V 200MW UMD3 $0.54 $ 0.54  

8 

MBRB2545CTT4

G 

DIODE ARRAY 

SCHOTTKY 45V D2PAK $1.40 $ 11.20  

1 760308201 

RX 1 COIL 1 LAYER 

10UH 4.5A $8.58 $ 8.58  

1 760308141 

TX 1 COIL 1 LAYER 

10UH 9A $22.55 $ 22.55  

1 860010781028 CAP 2200 UF 20% 63 V $4.77 $ 4.77  

1 TCT40-01E07K 

XFRMR LAMINATED 

40VA CHAS MOUNT $15.78 $ 15.78  

1 

IPT004N03LAT

MA1 

MOSFET N-CH 30V 300A 

8HSOF $5.55 $ 5.55  

1 

LM7815CT/NOP

B 

IC REG LINEAR 15V 1A 

TO220-3 $1.54 $ 1.54  

2 

GMK212BJ104K

GHT 

CAP CER 0.1UF 35V X5R 

0805 $0.20 $ 0.40  

  Total   $ 1,269.12   
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System Updates from Implementation and Testing 

Updated Microphone Circuitry [KO, PB] 

During testing of the microphone signal analysis circuitry using the small test circuit 

board shown in Figure 34, it was found that the envelope detector loaded down the microphone 

signal too much. In order to remedy this, the design was changed to implement a buffer at the 

output of the microphone itself. Because the buffer was biased with the 0-12V source of the 

system, the reference of the microphone signal at the output was shifted to be in an entirely 

positive range. This resulted in the envelope detector being obsolete for the design.  

 

Figure 34: Microphone Signal Analysis Test PCB 

Additionally, using this test board, an unsuccessful attempt was made to communicate 

with the chosen ADC IC over SPI. The 32bit packets were not able to be appropriately received 

and no data was seen transmitted back. After extensive troubleshooting, the sampling of the 

microphone signal was chosen to be moved from occurring on a separate ADC IC to occurring 

inside the microprocessor. The signal from each microphone is now fed to four independent 

ADC channels on the microprocessor. This implementation also allows for faster data 

acquisition. Using EagleCAD, the revised schematic shown in Figure 35 was used to create the 

PCB layout for both the user interface and robot microcontroller circuits, shown in Figure 36. As 

printed circuit boards of the same design are typically manufactured in batches of five or more 

boards regardless of how many the buyer actually needs, making the schematic useable for both 

aspects of the system when certain components are populated was the most cost-effective 



94 

solution. It also significantly simplified programming the microcontroller as the pinouts are 

identical. The resultant populated board is shown in Figure 37: 

 

Figure 35: User Interface and Robot Microcontroller Circuit Schematic 

 

Figure 36: User Interface and Robot Microcontroller PCB Layout 
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Figure 37: User Interface and Microcontroller PCB Top View 

Upon receiving the Microcontroller PCB and conducting further testing, it was found that 

for the microphone signal analysis a cascade of an operational amplifier buffer and a CMOS 

buffer obtained pulses with a very clear transition when a splash occurs. Additionally, in testing 

it was seen that the biasing of the microphone would change based on the environment, so a 

0.1uF capacitor was put in line before the signal was passed through the buffers to eliminate the 

AC small signal of the input. The new microphone circuit design is shown below in Figure 38 for 

a single microphone, with an identical circuit implementation for each microphone. A HEX 

Buffer IC package was chosen for each the operational amplifier and CMOS buffer so all four 

signals could be passed to a single chip. 

 

Figure 38: Updated Microphone Circuitry 

Operational  
Amplifier  

Buffer 

CMOS  
Buffer 
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The circuit revision is seen implemented in Figure 39 below where the needed components were 

soldered to a protoboard and then connected to the microcontroller circuit appropriately.  

 

Figure 39: Microcontroller PCB with Updated Microphone Circuitry 

The microphone signal when a splash is heard is shown below in Figure 40. Channel 1 (yellow) 

shows the signal directly produced by the microphone. Channel 2 (blue) depicts the signal after 

the operational amplifier buffer where the signal is seen to be rebiased between 12V and ground. 

Channel 3 (pink) shows the signal once passed through the CMOS buffer. A very distinct change 

in state is seen at each splash pulse. Channel 4 (green) depicts the signal when stepped down to 

approximately 3V to be fed to the ADC of the microcontroller.  
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Figure 40: Microphone Signal Progression using Microphone Circuitry 

 

An example of the difference in time between all four microphoned utilized to determine the 

splash location is seen below in Figure 41. 

 

Figure 41: Four Microphones Hearing a Splash 
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Updated Microphone Implementation [KO, PB] 

 While working on underwater tracking for the robot, there was an issue that arose during 

testing. It so happens that the 1 meter by 1 meter square that the microphones had been placed in 

was not sufficient for the project’s purposes. The time differences that were acquired from this 

distance were inconsistent and not distinct enough to use the original tracking equations. To 

rectify this, the microphones were moved to be in a 5.5 meter by 5.5 meter square centered 

around the track above the water. After doing this, multiple time differences between 

microphones in each section of the grid were recorded and placed into a table. Using this table, 

we were able to determine the time difference ranges that each of the grid squares fall into. This 

time, the time differences were very distinct and consistent. Using the microphones, the locations 

were able to be determined the majority of the time using the larger square.  

Bringing the microphones above water meant that the microphones could no longer be 

attached to the robot underwater. Doing so would cause the microphones to be dragged along 

while the robot moved to the calculated location. The microphones would now be attached to the 

user interface above the water. All the calculations to determine location would also be done on 

the user interface as well. After the location was determined on the user interface, the location 

would have to be communicated to the underwater robot. To do this, the IR LED would be 

flashed by the home station to communicate findings to the underwater robot. The number of 

times the LED flashes corresponds to one of the locations in the pool. Looking at the below 

diagram in Figure 42, one flash would correspond to position A, two flashes for position B, three 

flashes for position C, etc. For example, flashing the IR LED eight times would indicate that the 

location was calculated to be directly above the underwater robot, so the robot would not move. 

The raft would be released immediately. 
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Figure 42: Locations in Pool 

 

 

 

 

 

Updated Rectifier & Regulator Circuit [TD]: 

To power the alarm and microcontroller used for arming the system once a child has fallen into 

the pool, a 12V DC source is needed. To do this a rectifier and 12V DC regulator circuit was 

designed which can be seen below in Figure 43. After a successful simulation, the circuit was 

first built and tested on a breadboard. Next, the circuit schematic was drawn using Eagle and the 

PCB layout was completed in Figure 44. The circuit successfully outputs 12 V DC and interfaces 

with the user interface circuit as can be seen in Figure 45.  
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Figure 43: 12V DC Regulator Eagle Schematic 

 

Figure 44: 12V DC Regulator PCB Layout  
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Figure 45: 12V DC Rectifier & Regulator PCB Top View 

 

 

Updated Robot [TD]: 

To ensure the robot would move smoothly underwater, an aerodynamic sub was designed 

using SolidWorks. The sub was designed and 3D printed in six separate pieces: the nose, lid, 

box, side shields, thruster mounting bracket, and the roller retaining brackets. The shape of the 

nose was chosen to lower the drag during propulsion of the robot. The box and the lid needed to 

be designed to enclose the underwater container that held all of the electronics. The external 

dimensions of the underwater container are 9.10’’x5.90’’x4.30’’ so the box was designed to be 

11’’x6.90’’x4.8’’ and the lid’s dimensions are 11.00’’x6.90’’x1.50’’. Next, the thruster bracket 

was designed so that the thrusters could be mounted on the back of the sub and propel the robot 

forward along the track. Three cut outs were designed into the side shields to allow more water 

to flow through the thrusters. Lastly, two roller retaining brackets were designed with a quarter 
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inch diameter so that the rollers could be hooked onto the sub and guide it along the track. The 

sub was 3D printed at the MakerStudio in Bierce Library and on the EE department printer.  

 

Figure 46: Front View of Sub 

 

Figure 47: Side View of Sub 
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Figure 48: Side View of Sub 

 

Figure 49: Rear View of Sub 
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Updated Raft [AD]: 

Initially, the intention was to solely modify a 1” piece of foam supplied by Grainger 

Industrial to  support the victim when released. Further into the construction, the foam was to be 

incorporated in a solid structured frame to ensure that the child did not easily roll off of the raft. 

A 9-square grid was constructed where each side component is made of 1ft long piece of ¾” 

PVC, as well as four elbows, four crosses and eight tees all in ¾” size. The foam pieces were cut 

to fit inside the squares and holes were cut to reduce the buoyancy force and allow for 

attachment to the frame. Due to the limited amount of force that the solenoid is able to take on, 

the raft could not have a buoyancy force greater than approximately fifty pounds. With that in 

mind the rope to tether the raft to the solenoid was spec'd out to be no greater than sixty pounds 

and was attached to the four corners of the raft, and tied at the middle of the grid. All four pieces 

were threaded through the plunger of the solenoid and then tied around itself resulting in an even 

dispersion of pull down force, and equality in rise time when the solenoid was retracted. The 

distance between the raft and the solenoid was kept short in order to ensure that when the robot 

reached it’s stopping position, the raft did not move out of the area it was intended to be released 

in. Upon testing for submersion of the completed structure which included the PVC frame and 

foam mats, the raft could not be submerged even with 165 pounds, resulting in the removal of 

foam pieces until the mark of approximately 30 pounds was attained. To obtain the ability to 

submerge the raft, all nine pieces of foam were taken out, resulting in the buoyant PVC frame to 

be all that is remaining. When released the raft rises to the surface uniformly and within the 

1ft/sec design requirement as well as the size meeting the design requirement of a surface area of 

1m2. Finally, a netting was placed over the PVC construction in order to not allow the victim to 

slip in between the empty squares. The full construction can be seen in Figure 50. 



105 

 

Figure 50: Raft Construction 

 

Updated Raft Release [TD]:  

Originally the raft was designed to be released by a 12 V DC pinch valve. Upon further research, 

it was found that the pinch valve was not waterproof nor submersible in water. The final raft 

release design was chosen to be a 12V DC enclosed solenoid with a retracting plunger. The raft 

is tied around a ring on the plunger and once the sub reaches the splash location, a HI pulse is 

sent from the PIC32 microcontroller and the plunger is retracted releasing the raft. To interface 

with the microcontroller and amplify the current to the 2 A DC needed by the solenoid, an 

interfacing circuit was designed which can be seen in Figure 51. In the preceding circuit, when 

+3.3 volts is applied from the PIC to the solenoid control circuit, it causes Q3 to go into 

saturation (short) which causes the optoisolator, U2, to go into saturation, which causes Q1 to go  
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into cutoff (open), which causes Q2 to go into saturation turning on the solenoid.  When 0 volt 

comes from the PIC, Q3 goes into cutoff, causing the optoisolator, U2, to go into cutoff, putting 

Q1 into saturation, causing Q2 to go into cutoff turning off the solenoid.  

 

 

 

Figure 51: Solenoid to PIC32 Interfacing & Amplifying Circuit  
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Figure 52: Solenoid Circuit Soldered on Prototyping Board 

 

Figure 53: Solenoid & Plunger Mounted to Lid of Sub 
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Figure 54: Solenoid & Plunger Top View 

 

Updated Inductive Charging [AD]: 

Overall, the inductive charger’s purpose is to supply the battery of the robot in the pool 

with the ability to charge wirelessly. This is done through the schematic shown in Figure 55.  

 

Figure 55: Complete Inductive Charging Circuit 
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In order to charge wirelessly the charger is broken up into the GSU and the VSU circuits 

which are coupled together through two Wurth Electronics coils. The schematic of the GSU is 

shown in Figure 56 and the VSU schematic is displayed in Figure 57.   

 

Figure 56: GSU Schematic 

 

Figure 57: VSU Schematic 

The AC/DC converter takes in the 24VAC from the transformer through the 12V 

Regulator Board that is also in the home station. In between both boards is a mechanical toggle 

switch that allows controllability for when the battery should be charging.  



110 

Even though a large capacitance value was placed to produce a 24V DC there is a 

significant ripple which is shown below in Figure 58. 

 

Figure 58: Output of the GSU AC/DC Converter 

In order to provide an AC input to the 10uH coil a 20kHz switching circuit was implemented and 

in order to diminish the amount of voltage and current going to the 9A rated coil, a large power 

rated zener diode was used to drop down some of the voltage, and the second purpose was to 

provide Vcc to the 555 timer. The diode also acts as a safety feature, being if the diode was to 

blow, there would be no voltage on the coil because the switching circuit is disconnected. The 

voltage output of the first coil can be shown in Figure 59. 

 

Figure 59: Voltage Output of the GSU Coil 
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The induced voltage that is seen on the VSU coil is seen in Figure 60 and the final output voltage 

to the battery is seen in Figure 61. 

 

Figure 60: Induced Voltage on the VSU Coil 

 

Figure 61: Output Voltage to the Battery 
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Once the schematics were completed, the circuits were designed in Eagle, a PCB layout 

program. The GSU layout can be seen in Figure 62, while the PCB layout board of the VSU is 

shown in Figure 63.  

 

Figure 62: PCB Layout of the GSU 

 

Figure 63: PCB Layout of the VSU 

The GSU PCB construct can be seen in Figure 64 and the VSU in Figure 65 The intended 

interaction of the coils is found in Figure 66  
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Figure 64: GSU Construction 

 

 

Figure 65: VSU Construction 

 

Figure 66: Intended Interaction of Coils 

 



114 

Project Schedules 

Midterm Design Gantt Chart 

Gantt Chart Fall 2018: 

 
Figure 67: Fall 2018 Gantt Chart 
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Proposed Implementation Gantt Chart 

Gantt Chart Spring 2019:  

 
Figure 68: Spring 2019 Gantt Chart 
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Design Team Information Name, major. ESI (Y/N)  

Parsa Esshaghi Bayat,  Computer Engineering,  ESI (Y) 

Taylor Davis,    Electrical Engineering,   ESI (Y) 

Adrianna Dunlap,   Electrical Engineering,   ESI (Y) 

Kelly O’Neill,    Electrical Engineering,   ESI (Y) 

 

 

 

Conclusions and Recommendations 

At this time the team is making progress towards completion of the design and the 

determination of components that comprise the system. The team realizes that building the entire 

system will be a challenge, however, there is hope that the deadlines will still be met. 

From a time, management, and budget the team would recommend to others to not 

choose a project that is a system or utilizes electronics underwater. 
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Appendices 

 

Datasheets: 

User Interface Alarm Rectifier & Regulator Circuit Design 

 

● Power Transformer s- http://catalog.triadmagnetics.com/Asset/F-259U.pdf 

● Bridge Rectifier - http://www.mccsemi.com/up_pdf/MP5005W-MP5010W(MP-

50W).pdf 

● Regulator - https://www.onsemi.com/pub/Collateral/MC7800-D.PDF 

● 22,000uF Capacitor - 

http://www.rubycon.co.jp/en/catalog/e_pdfs/aluminum/Radial_Lead_Alumi_Eng.pdf 

● 100 uF Capacitor - 

https://media.digikey.com/pdf/Data%20Sheets/Panasonic%20Electronic%20Components

/ECA-xxM%20Series,TypeA.pdf 

 

Underwater Movement  

● T200 Thruster - http://docs.bluerobotics.com/thrusters/t200/ 

 

User Interface and Robot Microcontroller with Alarm and Microphone Circuitry 

● Continuous Sound  Alarm Buzzer 6-24VDC 100dB - http://a.co/d/iQWESEv 

● Microseven M7WP-MIC waterproof outdoor Microphone for M7B77-POE - 

http://a.co/d/aAhx03l 

● MOSFET N-CH 30V 3.6A SOT-23 - http://www.vishay.com/docs/65701/si2300ds.pdf 

● IC REG LINEAR 3.3V 1A SOT223 -https://www.mouser.com/datasheet/2/115/AP2114-

271472.pdf 

● DIODE SCHOTTKY 30V 200MA - https://toshiba.semicon-

storage.com/info/docget.jsp?did=7041&prodName=CUS520 

● IC MCU 32BIT 1MB FLASH 64TQFP - 

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MK-General-Purpose-and-

Motor-Control-%20(GPMC)-Family-Datasheet-60001402E.pdf 

● IC REG BUCK 5V 1A TO263-5 - https://www.mouser.com/datasheet/2/268/lm2575-

777962.pdf 

● FIXED IND 470UH 1.2A 820 MOHM- 

https://www.mouser.com/datasheet/2/54/RR1210A-1391531.pdf 

● CAP ALUM 100UF 20% 35V SMD- http://nichicon-us.com/english/products/pdfs/e-

uwt.pdf 

● DIODE SCHOTTKY 40V 3A SMC- 

https://www.diodes.com/assets/Datasheets/ds30923.pdf 

● IC IR RCVR MOD 38KHZ DOME RADIAL- 

https://www.vishay.com/docs/82491/tsop382.pdf 

● EMITTER IR 940NM 100MA RADIAL- 

http://www.everlight.com/file/ProductFile/201407061516067600.pdf 

● IC ADC 12BIT 500KSPS 4CH 38TSSOP- http://www.ti.com/lit/ds/symlink/ads8664.pdf 

● CAP CER 1UF 25V X7R 0805- 

https://media.digikey.com/pdf/Data%20Sheets/Samsung%20PDFs/CL_Series_MLCC_ds

.pdf 
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● CONN HOUSING 2POS - https://www.molex.com/pdm_docs/sd/022012027_sd.pdf 

● CONN HOUSING 3POS - https://www.molex.com/pdm_docs/sd/022012037_sd.pdf 

● CONN HDR BRKWAY .100 40POS VERT - 

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&Doc

Nm=103747&DocType=Customer+Drawing&DocLang=English 

● CONN TERM FEMALE 22-30AWG - https://www.molex.com/pdm_docs/ps/PS-99020-

0088.pdf 

● CONN HEADER 2POS .100 R/A TIN - https://www.molex.com/pdm_docs/ps/PS-10-07-

001.pdf 

● CONN HEADER 3POS .100 R/A TIN - https://www.molex.com/pdm_docs/ps/PS-10-07-

001.pdf 

 

Inductive Charging 

● Battery -

https://www.batteriesplus.com/productdetails/SLAA12=10F2?locationofinterest=905192

4&locationphysical=9015403&gclid=EAIaIQobChMIorrn-

Z_23gIVgjppCh3JGAraEAQYAiABEgLlj_D_BwE 

● 100uF Capacitors- https://media.digikey.com/pdf/Data%20Sheets/United%20Chemi-

Con%20PDFs/NTJ_Series_2016.pdf 

● Capacitor-200uF- https://industrial.panasonic.com/ww/products/capacitors/aluminum-

capacitors/aluminum-cap-lead/tp/EEUTP1V202SB 

● 47mH Inductor- https://www.murata-ps.com/data/magnetics/kmp_2200rm.pdf 

● Schottky Diodes- https://www.diodes.com/assets/Datasheets/ZLLS2000.pdf 

● Q2 -

http://rohmfs.rohm.com/en/products/databook/datasheet/discrete/transistor/bipolar/2sd26

56t106-e.pdf 

● Resistor-1k-https://www.rohm.com/datasheet/ESR01MZPF/esr-e 

● Diodes in Diode Bridge- https://www.onsemi.com/pub/Collateral/MBRB2545CT-D.PDF 

● RX Coil- https://katalog.we-online.de/pbs/datasheet/760308201.pdf 

● TX Coil- https://katalog.we-online.de/pbs/datasheet/760308141.pdf 

● 2200uF Capacitor- https://katalog.we-online.de/pbs/datasheet/860010781028.pdf 

● Transformer- http://catalog.triadmagnetics.com/Asset/TCT40-01E07K.pdf 

● NMOS- 

https://www.infineon.com/dgdl/IPT004N03L_rev1.2.pdf?folderId=db3a304313b8b5a601

13cee8763b02d7&fileId=db3a30433e9d5d11013e9e0f382600c2 

● 15V Linear Regulator- http://www.ti.com/lit/ds/symlink/lm340.pdf 

● 100nF Capacitors- 

https://search.murata.co.jp/Ceramy/image/img/A01X/G101/ENG/GRM033R6YA104ME

14-01.pdf` 
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