452 research outputs found
Recommended from our members
Strain sensitivity enhancement in suspended core fiber tapers
Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs
Long time behaviour and self-similarity in an addition model with slow Input of monomers
We consider a coagulation equation with constant coefficients and a time dependent
power law input of monomers. We discuss the asymptotic behaviour of solutions as , and we prove solutions converge to a similarity profile along the non-characteristic
direction
A contiuum model for low temperature relaxation of crystal steps
High and low temperature relaxation of crystal steps are described in a
unified picture, using a continuum model based on a modified expression of the
step free energy. Results are in agreement with experiments and Monte Carlo
simulations of step fluctuations and monolayer cluster diffusion and
relaxation. In an extended model where mass exchange with neighboring terraces
is allowed, step transparency and a low temperature regime for unstable step
meandering are found.Comment: Submitted to Phys.Rev.Let
Competitive random sequential adsorption of point and fixed-sized particles: analytical results
We study the kinetics of competitive random sequential adsorption (RSA) of
particles of binary mixture of points and fixed-sized particles within the
mean-field approach. The present work is a generalization of the random car
parking problem in the sense that it considers the case when either a car of
fixed size is parked with probability q or the parking space is partitioned
into two smaller spaces with probability (1-q) at each time event. This allows
an interesting interplay between the classical RSA problem at one extreme
(q=1), and the kinetics of fragmentation processes at the other extreme (q=0).
We present exact analytical results for coverage for a whole range of q values,
and physical explanations are given for different aspects of the problem. In
addition, a comprehensive account of the scaling theory, emphasizing on
dimensional analysis, is presented, and the exact expression for the scaling
function and exponents are obtained.Comment: 7 pages, latex, 3 figure
Effects of Possible Transitions in Neutral Meson Decays}
We explore the possibility that the existing data on like-sign dileptons at
the resonance consist of events arising from mixing and also from transitions. The
consequences of these nonstandard transitions for certain time-asymmetries
which are likely to be measured at the factories are studied.Comment: {\LARGE \bf 10 pages, no figures, process using latex, TIFR/TH/93-5
Self-diffusion of adatoms, dimers, and vacancies on Cu(100)
We use ab initio static relaxation methods and semi-empirical
molecular-dynamics simulations to investigate the energetics and dynamics of
the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that
the dynamical energy barriers for diffusion are well approximated by the
static, 0 K barriers and that prefactors do not depend sensitively on the
species undergoing diffusion. The ab initio barriers are observed to be
significantly lower when calculated within the generalized-gradient
approximation (GGA) rather than in the local-density approximation (LDA). Our
calculations predict that surface diffusion should proceed primarily via the
diffusion of vacancies. Adatoms are found to migrate most easily via a jump
mechanism. This is the case, also, of dimers, even though the corresponding
barrier is slightly larger than it is for adatoms. We observe, further, that
dimers diffuse more readily than they can dissociate. Our results are discussed
in the context of recent submonolayer growth experiments of Cu(100).Comment: Submitted to the Physical Review B; 15 pages including postscript
figures; see also http://www.centrcn.umontreal.ca/~lewi
Theoretical and numerical studies of chemisorption on a line with precursor layer diffusion
We consider a model for random deposition of monomers on a line with
extrinsic precursor states. As the adsorbate coverage increases, the system
develops non-trivial correlations due to the diffusion mediated deposition
mechanism. In a numeric simulation, we study various quantities describing the
evolution of the island structure. We propose a simple, self-consistent theory
which incorporates pair correlations. The results for the correlations, island
density number, average island size and probabilities of island nucleation,
growth and coagulation show good agreement with the simulation data.Comment: 17 pages(LaTeX), 11 figures(1 PS file, uuencoded), submmited to Phys.
Rev.
The critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model
We present a new way of probing the universality class of the site-diluted
two-dimensional Ising model. We analyse Monte Carlo data for the magnetic
susceptibility, introducing a new fitting procedure in the critical region
applicable even for a single sample with quenched disorder. This gives us the
possibility to fit simultaneously the critical exponent, the critical amplitude
and the sample dependent pseudo-critical temperature. The critical amplitude
ratio of the magnetic susceptibility is seen to be independent of the
concentration of the empty sites for all investigated values of . At the same time the average effective exponent is found
to vary with the concentration , which may be argued to be due to
logarithmic corrections to the power law of the pure system. This corrections
are canceled in the susceptibility amplitude ratio as predicted by theory. The
central charge of the corresponding field theory was computed and compared well
with the theoretical predictions.Comment: 6 pages, 4 figure
- …