452 research outputs found

    Long time behaviour and self-similarity in an addition model with slow Input of monomers

    Get PDF
    We consider a coagulation equation with constant coefficients and a time dependent power law input of monomers. We discuss the asymptotic behaviour of solutions as tt \to \infty, and we prove solutions converge to a similarity profile along the non-characteristic direction

    A contiuum model for low temperature relaxation of crystal steps

    Full text link
    High and low temperature relaxation of crystal steps are described in a unified picture, using a continuum model based on a modified expression of the step free energy. Results are in agreement with experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relaxation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency and a low temperature regime for unstable step meandering are found.Comment: Submitted to Phys.Rev.Let

    Competitive random sequential adsorption of point and fixed-sized particles: analytical results

    Full text link
    We study the kinetics of competitive random sequential adsorption (RSA) of particles of binary mixture of points and fixed-sized particles within the mean-field approach. The present work is a generalization of the random car parking problem in the sense that it considers the case when either a car of fixed size is parked with probability q or the parking space is partitioned into two smaller spaces with probability (1-q) at each time event. This allows an interesting interplay between the classical RSA problem at one extreme (q=1), and the kinetics of fragmentation processes at the other extreme (q=0). We present exact analytical results for coverage for a whole range of q values, and physical explanations are given for different aspects of the problem. In addition, a comprehensive account of the scaling theory, emphasizing on dimensional analysis, is presented, and the exact expression for the scaling function and exponents are obtained.Comment: 7 pages, latex, 3 figure

    Effects of Possible ΔB=ΔQ\Delta B =- \Delta Q Transitions in Neutral BB Meson Decays}

    Full text link
    We explore the possibility that the existing data on like-sign dileptons at the Υ(4S)\Upsilon (4S) resonance consist of events arising from Bd0Bˉd0B_{d}^0 -\bar B_{d}^0 mixing and also from ΔB=ΔQ\Delta B = - \Delta Q transitions. The consequences of these nonstandard transitions for certain time-asymmetries which are likely to be measured at the BB factories are studied.Comment: {\LARGE \bf 10 pages, no figures, process using latex, TIFR/TH/93-5

    Self-diffusion of adatoms, dimers, and vacancies on Cu(100)

    Full text link
    We use ab initio static relaxation methods and semi-empirical molecular-dynamics simulations to investigate the energetics and dynamics of the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that the dynamical energy barriers for diffusion are well approximated by the static, 0 K barriers and that prefactors do not depend sensitively on the species undergoing diffusion. The ab initio barriers are observed to be significantly lower when calculated within the generalized-gradient approximation (GGA) rather than in the local-density approximation (LDA). Our calculations predict that surface diffusion should proceed primarily via the diffusion of vacancies. Adatoms are found to migrate most easily via a jump mechanism. This is the case, also, of dimers, even though the corresponding barrier is slightly larger than it is for adatoms. We observe, further, that dimers diffuse more readily than they can dissociate. Our results are discussed in the context of recent submonolayer growth experiments of Cu(100).Comment: Submitted to the Physical Review B; 15 pages including postscript figures; see also http://www.centrcn.umontreal.ca/~lewi

    Theoretical and numerical studies of chemisorption on a line with precursor layer diffusion

    Get PDF
    We consider a model for random deposition of monomers on a line with extrinsic precursor states. As the adsorbate coverage increases, the system develops non-trivial correlations due to the diffusion mediated deposition mechanism. In a numeric simulation, we study various quantities describing the evolution of the island structure. We propose a simple, self-consistent theory which incorporates pair correlations. The results for the correlations, island density number, average island size and probabilities of island nucleation, growth and coagulation show good agreement with the simulation data.Comment: 17 pages(LaTeX), 11 figures(1 PS file, uuencoded), submmited to Phys. Rev.

    The critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model

    Full text link
    We present a new way of probing the universality class of the site-diluted two-dimensional Ising model. We analyse Monte Carlo data for the magnetic susceptibility, introducing a new fitting procedure in the critical region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simultaneously the critical exponent, the critical amplitude and the sample dependent pseudo-critical temperature. The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentration qq of the empty sites for all investigated values of q0.25q\le 0.25. At the same time the average effective exponent γeff\gamma_{eff} is found to vary with the concentration qq, which may be argued to be due to logarithmic corrections to the power law of the pure system. This corrections are canceled in the susceptibility amplitude ratio as predicted by theory. The central charge of the corresponding field theory was computed and compared well with the theoretical predictions.Comment: 6 pages, 4 figure
    corecore