3,199 research outputs found

    Quantum fields in disequilibrium: neutral scalar bosons with long-range, inhomogeneous perturbations

    Get PDF
    Using Schwinger's quantum action principle, dispersion relations are obtained for neutral scalar mesons interacting with bi-local sources. These relations are used as the basis of a method for representing the effect of interactions in the Gaussian approximation to field theory, and it is argued that a marked inhomogeneity, in space-time dependence of the sources, forces a discrete spectrum on the field. The development of such a system is characterized by features commonly associated with chaos and self-organization (localization by domain or cell formation). The Green functions play the role of an iterative map in phase space. Stable systems reside at the fixed points of the map. The present work can be applied to self-interacting theories by choosing suitable properties for the sources. Rapid transport leads to a second order phase transition and anomalous dispersion. Finally, it is shown that there is a compact representation of the non-equilibrium dynamics in terms of generalized chemical potentials, or equivalently as a pseudo-gauge theory, with an imaginary charge. This analogy shows, more clearly, how dissipation and entropy production are related to the source picture and transform a flip-flop like behaviour between two reservoirs into the Landau problem in a constant `magnetic field'. A summary of conventions and formalism is provided as a basis for future work.Comment: 23 pages revte

    The Predominant CD4+ Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma

    Get PDF
    Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine

    Non-Equilibrium Quantum Fields in the Large N Expansion

    Get PDF
    An effective action technique for the time evolution of a closed system consisting of one or more mean fields interacting with their quantum fluctuations is presented. By marrying large NN expansion methods to the Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective action, causality of the resulting equations of motion is ensured and a systematic, energy conserving and gauge invariant expansion about the quasi-classical mean field(s) in powers of 1/N1/N developed. The general method is exposed in two specific examples, O(N)O(N) symmetric scalar \l\F^4 theory and Quantum Electrodynamics (QED) with NN fermion fields. The \l\F^4 case is well suited to the numerical study of the real time dynamics of phase transitions characterized by a scalar order parameter. In QED the technique may be used to study the quantum non-equilibrium effects of pair creation in strong electric fields and the scattering and transport processes in a relativistic e+ee^+e^- plasma. A simple renormalization scheme that makes practical the numerical solution of the equations of motion of these and other field theories is described.Comment: 43 pages, LA-UR-94-783 (PRD, in press), uuencoded PostScrip

    On the Derivative Expansion at Finite Temperature

    Full text link
    In this short note, we indicate the origin of nonanalyticity in the method of derivative expansion at finite temperature and discuss some of its consequences.Comment: 7 pages, UR-1363, ER40685-81

    Electrocardiographic changes associated with hyperkalaemia in domestic cats

    Get PDF
    Hyperkalaemia is a life-threatening electrolyte imbalance because it affects cardiac conduction and can lead to fatal arrhythmias if left untreated. The present study describes the occurrence of hyperkalaemia in cats and the electrocardiographic changes associated with this electrolyte imbalance. Hyperkalaemia was identified in 83.33 per cent of the study group subjects. Acute kidney injury and obstructive uropathy were the main clinical conditions associated with it. Electrocardiographic findings in hyperkalaemia in different cats under study included peaked T waves in lead II and the precordial lead CV6LL, atrial standstill and sino-ventricular rhythm, normal sinus rhythm, ventricular tachycardia, first-degree atrio-ventricular block, bradycardia, sinus tachycardia, and atrio-ventricular dissociation. Electrocardiography should always be performed in cases suspected of electrolyte imbalances, particularly hyperkalaemia, so as to identify any fatal arrhythmias and initiate treatment at the earliest

    Strong Dissipative Behavior in Quantum Field Theory

    Get PDF
    We study under which conditions an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium in phenomenological theories of phase transitions. Applications of our results, including a recently proposed inflationary scenario called ``warm inflation'', are discussed.Comment: 45 pages, 5 figures, Latex, In press Phys. Rev. D, minor correction

    Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes

    Full text link
    The noise kernel is the vacuum expectation value of the (operator-valued) stress-energy bi-tensor which describes the fluctuations of a quantum field in curved spacetimes. It plays the role in stochastic semiclassical gravity based on the Einstein-Langevin equation similar to the expectation value of the stress-energy tensor in semiclassical gravity based on the semiclassical Einstein equation. According to the stochastic gravity program, this two point function (and by extension the higher order correlations in a hierarchy) of the stress energy tensor possesses precious statistical mechanical information of quantum fields in curved spacetime and, by the self-consistency required of Einstein's equation, provides a probe into the coherence properties of the gravity sector (as measured by the higher order correlation functions of gravitons) and the quantum nature of spacetime. It reflects the low and medium energy (referring to Planck energy as high energy) behavior of any viable theory of quantum gravity, including string theory. It is also useful for calculating quantum fluctuations of fields in modern theories of structure formation and for backreaction problems in cosmological and black holes spacetimes. We discuss the properties of this bi-tensor with the method of point-separation, and derive a regularized expression of the noise-kernel for a scalar field in general curved spacetimes. One collorary of our finding is that for a massless conformal field the trace of the noise kernel identically vanishes. We outline how the general framework and results derived here can be used for the calculation of noise kernels for Robertson-Walker and Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex
    corecore