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Using Schwinger's quantum action principle, dispersion relations are obtained for neutral scalar
mesons interacting with bi-local sources. These relations are used as the basis of a method for

representing the e�ect of interactions in the Gaussian approximation to �eld theory, and it is argued

that a marked inhomogeneity, in space-time dependence of the sources, forces a discrete spectrum
on the �eld. The development of such a system is characterized by features commonly associated

with chaos and self-organization (localization by domain or cell formation). The Green functions

play the role of an iterative map in phase space. Stable systems reside at the �xed points of the
map. The present work can be applied to self-interacting theories by choosing suitable properties

for the sources. Rapid transport leads to a second order phase transition and anomalous dispersion.

Finally, it is shown that there is a compact representation of the non-equilibrium dynamics in terms
of generalized chemical potentials, or equivalently as a pseudo-gauge theory, with an imaginary

charge. This analogy shows, more clearly, how dissipation and entropy production are related to

the source picture and transform a 
ip-
op like behaviour between two reservoirs into the Landau
problem in a constant `magnetic �eld'. A summary of conventions and formalism is provided as a

basis for future work.

I. INTRODUCTION

An increasing number of actual problems in physics �nd their natural expression not in the the static (equilibrium)
aspects of quantum systems, but in the kinematical (non-equilibrium) development of their average properties. Ex-
amples include studies of early universe expansion [1{3], heavy ion collisions and the postulated quark-gluon plasma
[4], lasers and other driven systems [5{7], and particle creation in changing �elds of force [8,9].
The migration from equilibrium to non-equilibrium involves a shift of paradigm. In common with zero-temperature

�eld theory, particle systems at equilibrium are often treated by a scattering formalism, with an initial (in) state and a
�nal (out) state; this is only sensible if both are known and are at equilibrium with the same thermodynamic reservoir.
The physics of a non-equilibrium system demands di�erent boundary conditions. The initial and �nal states are (by
de�nition) not characterized by the same ensemble and it is more appropriate to de�ne the state (spectral pro�le or
density matrix) of the system at some initial time ti and compute the �nal state and its consequence at a later time
t. This describes to an initial value problem which is deftly handled by Schwinger's closed time path (CTP) action
principle. The new picture also implies a concern with probabilities, or expectation values rather than amplitudes.
In equilibrium, one is used to the notion of translational invariance in space and time, implying that physical

quantities only depend on the di�erences of coordinates x � x0. When the �eld is driven into disequilibrium, it
acquires an additional dependence on the average position and time x = 1

2(x + x0). This is measured relative to an
initial point of reference xi. In practical applications it is usually necessary to assume that the dependence on the
average coordinate is quasi-static or of low adiabatic order in order to make computations tractable. The dependence
on the average coordinate has important features: the preservation of unitarity demands that the statistical state of
the �eld only depend on x and not x � x0. Since the state of the �eld can only be altered by the intervention of
sources or sinks (hereafter referred to collectively as sources), the sources must also develop with respect to the average
coordinate. Since one is interested both in 
uctuations and the average kinematics, it is convenient to work with
variables and sources which are bi-local objects rather than working with the �eld itself. This is in contrast to the pure
�eld approach used by Schwinger [10]. Self-interacting theories are a special case in which the �eld is its own source;
they pose mainly calculational problems|conceptually no new issues are introduced other than self-consistency.
Since the external sources a�ect the average state, they can be regarded as thermodynamical reservoirs, with the

caveat that they must su�er a `recoil' or back-reaction as a result of their e�ect on the system. This is not negligeable
o� equilibrium. Many quantum systems (the laser, for example) can be treated as two-reservoir systems in which the
`external' reservoir is of comparable magnitude to the local one.
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The nomenclature `open system' is used to describe a system coupled to independent sources. The name `closed
system' is given to a system without sources or one in which the �eld is its own source; in the latter case, the source
must become e�ectively impotent with regard to the further development of the average state, as equilibrium is
approached. Equilibrium is only achieved when, either the whole system approaches some driven limit cycle, or the
contact with external sources is e�ectively terminated. In a closed system, the �nal equilibrium is a thermal state, or
a state of maximum entropy. Some authors de�ne equilibrium to mean a thermal state rather than merely a static
one|and non-equilibrium to mean anything else. This is somewhat misleading since a non-thermal but static state is
still �nal in the absence of new perturbations and must therefore be considered a point of equilibrium for the system.
The purpose of the present paper is to extend Schwinger's method of analysis to treat non-equilibrium ensembles of

bosons. This touches on and extends a number of apparently di�erent approaches to non-equilibrium [1,3,11]. Since
Schwinger's original work [10] on the initial-value problem, most authors have been seduced by the functional integral
and have therefore missed the often subtle advantages of Schwinger's methodology. It is intended that the present
work should convey a pedagogical 
avour of the suggested approach, which overlaps with the existing literature in
strategic places without actually following any of them. In particular, conventions and de�nitions (which di�er from
most other accounts) have been chosen rather carefully for practical purposes. Some well known results are rederived
in order to make the present work as self-contained as possible. The paper begins with a summarial discussion of
the formalism, paying special attention to the action principle and unitarity; later the most general quadratic theory
which maintains unitarity is presented and the Green functions are calculated for prescribed sources. Particular
attention is paid to the e�ects of non-locality in the sources|an issue which has been largely neglected in previous
work, and turns out to place strong requirements on the behaviour of stable systems. Finally a brief comparison is
made between the present work and other approaches.

II. FORMALISM AND CONVENTIONS

The conceptual framework for the decription of non-equilibrium processes will include operator �eld theory, the
method of sources and the local momentum space Green functions. In addition it proves convenient to use Schwinger's
quantum action principle. This is a statement about the unitary development of the �eld with respect to the variation
of certain variables. Since it embodies the equations of motion and the fundamental commutation relations for the
�eld, it is both compact and elegant. One begins with the action operator, which is de�ned to be the classical action
with the classical �eld replaced by the �eld operator, together with a suitable ordering prescription for the �elds.
Here the ordering will be the usual time-ordering and the action that for a real scalar �eld without self-interactions.
The Minkowski metric-signature is (�+++ � � �) which allows straightforward comparison with the Euclidean theory.

S =

Z
dVxf

1

2
(@��)(@��) +

1

2
m2�2 � J�g (1)

where dVx is the Minkowski volume element. The operator equations of motion now follow from the quantum action
principle [12]

�h�j�0i = ih�j�Sj�0i (2)

giving �
� +m2

�
�(x) = J(x) (3)

Given that �(x) = �(xi) at initial time ti (or, more generally, on the the space-like hypersurface �i), the solution to
(3) may be written

�(x) = �(xi) +

Z �

�i

dVx0Gc(x; x
0)J(x0) (4)

where �i and � are the initial and �nal hypersurfaces and Gc(x; x
0) is a Green function which satis�es

(�
x

+m2)Gc(x; x
0) = �(x; x0): (5)

Both the Feynman propagator and the retarded Green function have this property.
The surface integral under the variation of the action vanishes independently implying that the generator of in-

�nitesimal unitary transformations on the �eld is [12]
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�� =

Z
d���@��: (6)

Since it is easily established [12] that the unitary variation of any operator A is

�A = �i[A;�A] (7)

it follows that, on any spacelike hypersurface with orthogonal vector n̂�, one has

[�;��]n̂
� = i�(x;x0) (8)

with �� = @��. This is the covariant statement of the canonical commutation relations for the �eld and its conjugate
momentum. To avoid unnecessary notation it is convenient to write this simply as

[�(x; t); @t�(x
0; t)] = i�(x;x0) (9)

with the understanding that general covariance is easily restored by introducing a suitable time-like vector.
From the action principle (2) it can be shown by repeated functional di�erentiation with respect to the source that

�nh�2j�1iJ

�J(x1) : : : �J(xn)
= inh�2jT (�(x1) : : :�(xn))j�1i; (10)

thus the Taylor expansion of the amplitude may be written in the shorthand form

h�2j�1iJ = h�2jTe
iJ�

j�1i (11)

where T denotes time-ordering (latest time to the left). This formula may be regarded as a generating functional for
the n-point functions of the theory. The complex conjugate of this quantity is

h�2j�1i
y

J = h�1j�2iJ = h�1jT
ye�iJ�j�2i (12)

where T y stands for anti-time-ordering (latest �eld to the right). This reverse-ordering is necessary to ensure the
cancellation of intermediate �elds in the identity:

h�2j�1iJ � h�1j�2iJ = h�2jT
ye�iJ�TeiJ�j�2i = 1: (13)

This is the key observation for the construction of the expectation values. Notice how the operator ordering in (13)
starts from an early time, increases to a �nal time (at the centre of the operator product) and then reverses back
to the initial time. Each �eld, at each instant along the closed time path has a mirror counterpart required for the
cancellation of the intermediate operators in (13). This property can now be used to advantage to construct a `closed
time path' action principle [10,13].
Consider an expectation value of the form

htjX(t0)jti =
X
i;i0

htjiihijX(t0)ji0ihi0jti (14)

where the sum over intermediate states i; i0 is a sum over all states and htj is a shorthand which refers to either a
pure state of the system, or a mixed state, speci�ed at time t. The expectation value speci�es the average value of
the operator X at the time t0 given the state of the system at time t. It involves conjugate amplitudes and hence the
conjugate forms of the action principle:

�htjii = ihtj�Stijii (15)

�hijti = �ihij�S
y

itjti (16)

Sab =

Z b

a

dtL: (17)

To obtain (14) from an action principle one would therefore like to introduce the operator X by functional di�eren-
tiation with respect to an appropriate source (or combination of sources) between an amplitude and its conjugate.
This is achieved in the following way. First one observes that
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�htjti = �(
X
i

htjii � hijti) = �(1) = 0; (18)

so di�erentiation of this object is to no avail. However, if we make an arti�cial distinction between the amplitude and
its conjugate by labelling all objects in the former with a + symbol and all objects in the latter with a � symbol,

�htjti = lim
+!�

ihtj�S+ � �S
y

�
jti (19)

then we can use the solution of this quantity as a generating functional for (14) since X can be expanded in terms of
either �

�J+
or �

�J�
. This breaks the symmetry of symbols in (18). At the end of a variational calculation one removes

the + and � symbols restoring the conjugate relationship between the two amplitudes, having inserted the appropriate
operators by di�erentiation with respect to the source of only one of them. Note in (19) that, for any unitary �eld
theory, the action is self-adjoint, thus we may drop the dagger symbol in future. Also, in treating the + and � parts
of the �eld as being arti�cially independent, the condition

�+(t1) = ��(t1) (20)

is required to ensure that the limit + ! � restores the single identity of the �eld operators, and additionally one
must have that all �� �elds (at any time) must stand to the left of all �+ �elds (at any time). Since � �elds are
anti-time-ordered and + �elds are time ordered, this condition arises naturally and ensures the triviality of (13).
The meaning of the above procedure can be illustrated by noting that the solution to (19) may be written

htijtiiJ� = htijT
ye�iJi��TeiJ+�+ jtii: (21)

The expectation value of the �eld is found using the ordered expression

�i
�

�J+(x)
htijtii

�����
+=�

= h�(x)i (22)

= lim
+!�

htij exp

�
�i

Z
1

ti

J��� + i

Z
1

t

J+�+

�
�+(x) exp

�
i

Z t

ti

�
jtii: (23)

Taking the limit +!�, one has

h�(x)i = htij exp

�
�i

Z t

ti

J�

�
�(x) exp

�
i

Z t

ti

J�

�
jtii: (24)

This shows that the average value of the operator depends only on the past (retarded) history of the system beginning
from the initial time ti. It can be shown (see appendix A) that the closed time path generating functional is closely
related to the generator for the retarded n-point functions. The acausal (advanced) pieces cancel in the limit +!�.
So far, the discussion has used the slightly trivial example of pure states htj. As noted implicitly by Schwinger [10],

the same action principle holds when htj : : : jti is replaced by htj�(t) : : : jti (a mixture of states) since this does not a�ect
the conjugate relationship between amplitudes. The nature of the expectation value can therefore be left out of the
discussion for the most part. Indeed, in practice, the e�ect of a non-trivial density matrix in the expectation value can
be mimicked by the introduction of suitable sources [10,14]|a procedure which will be adopted in the next section.
To present the formalism in a way conducive to generalization, the next step is to present the Green functions for the
case of pure-state vacuum expectation values and then introduce the �nite temperature (mixed state) modi�cations
which will be the starting point for writing down an ansatz for non-equilibrium.
The above use of generating functionals is closely related to the path integral approaches of Calzetta and Hu [1], and

Lawrie [3]. It proves useful not to pass directly to the path integral however, but to follow Schwinger's approach. For
the remainder of the paper, equation (19) will be considered the starting point for the discussion of non-equilibrium
�eld theory.
From equations (1) and (19) one obtains the operator equations of motion for the �eld. Taking the initial time to

be ti, the furthermost future time to be t1 and the �nal time at which expectation values are to be computed as tf ,
then using the boundary condition in equation (20),

�+(x) = �(xi) +

Z t

ti

Gc(x; x
0)J+(x

0)dVx0

��(x) = �+(t1) +

Z tf

t1

Gc(x; x
0)J�(x

0)dVx`

= �(xi) +

Z t1

ti

Gc(x; x
0)J+(x

0)dVx0 +

Z tf

t1

Gc(x; x
0)J�(x

0)dVx` (25)
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where Gc(x; x
0) is a retarded (causal) Green function. Notice that, as the distinction between + and � is removed,

these equations reduce to (4). Substituting these into the exponential solution to (19) and de�ning a vector and its
transverse by JT = (J+J�), one may write

lnh0; tij0; tii = �i

Z t1

tf

J�(x
0)dVx0�(xi) + i

Z t1

ti

JT (x)G(x; x0)J(x0)dVxdVx0 (26)

where

G(x; x0) =

�
�(x� x0)Gc(x; x

0) 0
�Gc(x; x

0) �(x0 � x)Gc(x; x
0)

�
; (27)

and �(x� x0) is the step function which satis�es

�(x) + �(�x) = 1: (28)

As a result of this property, the sum of rows and columns in (27) is zero. This is a re
ection of the triviality of
equation (13). It further implies the causality of expectation values derived from this generating functional. While
(27) has a simple physical derivation in terms of the equations of motion, a more symmetrical form can be obtained
by attaching a variational interpretation to Gc(x; x

0) directly. Again, following Schwinger, and varying with respect
to the sources

�2�1htijtii = (i)2htj(�2S+ � �2S�)(�1S+ � �1S�)jit > (29)

where, according to the ordering rule, this equals

�2�1hti; tii = (i)2htj�+(x2)�+(x1) + ��(x2)��(x1) � ��(x2)�+(x1) � �+(x2)��(x1)jit > : (30)

Comparing the solution of this to

exp

�
i

2

Z
dVxdVx0J

TG(x; x0)J(x0)

�
(31)

one has

G(x; x0) =

�
G++ G+�

G�+ G��

�
; (32)

where

h�+(x)�+(x
0)i = �iG++(x; x

0) (33)

h�+(x)��(x
0)i = iG+�(x; x

0) (34)

h��(x)�+(x
0)i = iG�+(x; x

0) (35)

h��(x)��(x
0)i = �iG��(x; x

0): (36)

As the distinction between + and � is lifted, the assumed ordering implies that

G++(x; x
0) = ihT�(x)�(x0)i = GF (x; x

0) (37)

G+�(x; x
0) = �ih�(x)�(x0)i = �G(�)(x; x0) (38)

G�+(x; x
0) = �ih�(x0)�(x)i = G(+)(x; x0) (39)

G��(x; x
0) = ihT y�(x)�(x0)i = GAF (x; x

0) (40)

(41)

where GF is the Feynman propagator, G(�) are the positive and negative frequency Wightman functions and GAF is
the anti-time ordered propagator. In the limit of zero source, these quantities satisfy the equations

(� +m2)GF (x; x
0) = �(x; x0) (42)

(� +m2)G(�)(x; x0) = 0 (43)

(� +m2)GAF (x; x
0) = ��(x; x0) (44)

(45)
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by virtue of equation (5) for the �eld operator. The non-zero right hand side of (42) and (43) are due to the time
ordering. From the time-ordering (37) it follows that

�iGF (x; x
0) = i�(t � t0)G(+)(x; x0)� i�(t0 � t)G(�)(x; x0): (46)

Substituting this relation into (37) and using the commutation relations for the �eld (9) proves (37). Similarly (44)
follows from the relation

GAF (x; x
0) = �G�F (x; x

0): (47)

Using (28), it is now straightforward to see that the sum of the rows and columns in (32) is vanishing, as required for
causality. A number of additional relations between the Green functions can be proven. The retarded and advanced
Green functions satisfy:

Gret(x; x
0) = ��(t � t0)[�(x); �(x0)]

Gadv(x; x
0) = �(t0 � t)[�(x); �(x0)]: (48)

Also, in virtue of (28) it is easy to see that

GF = Gret + G(�) = Gadv � G(+) (49)

GAF = = Gret +G(+) = Gadv �G((�)): (50)

The unequal-time commutator and anti-commutator Green-functions are de�ned by

~G(x; x0) = [�(x); �(x0)] = G(+) + G(�)

G(x; x0) = f�(x); �(x0)g = G(+)
�G(�) (51)

These will be useful later and serve to pin-point the conventions used in this work. Before considering the momentum-
space representation of these functions it is useful to note that G(x; x0) can be written entirely in terms of the formal
quantity

H(x; x0) � ihtj�(x)�(x0)jti (52)

as

G(x; x0) = �(t � t0)

�
H(x; x0) �H(x0; x)
�H(x; x0) H(x0; x)

�
+ �(t0 � t)

�
H(x0; x) �H(x0; x)
�H(x; x0) H(x; x0)

�
; (53)

where

H(x0; x) = H(x; x0)� (54)

and the sum of rows and columns is manifestly zero. Since the spectrum of the operator � +m2 on the complex
wave eikx is solved for any k satisfying a dispersion relation, the solution to (43) is the most general linear combination
of plane waves satisfying the dispersion relation k2 + m2 = 0. This implies that the vacuum positive and negative
frequency Wightman functions can be written, in n spacetime dimensions,

G(+) = �2�i

Z
dnk

(2�)n
eik�(x�x

0)��(k0)�(k
2 +m2) (55)

G(�) = 2�i

Z
dnk

(2�)n
eik�(x�x

0)��(�k0)�(k
2 +m2): (56)

De�ning the fourier transform of G(x; x0) byZ
dnk

(2�)n
eik�(x�x

0)�G(k); (57)

and using the integral representation

�(t � t0) = i

Z +1

�1

d!

2�

e�i!(t�t
0)

! + i�
(58)
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it is straightforward to show from (46) that

GF (k) =
1

k2 +m2 � i�
; (59)

which is fully consistent with (42). GAF (k) is easily obtained from (47).
Note that, had the symmetrical form of G(x; x0) not been used, similar results could still have been obtained. It

is possible, in the manner of a symmetry transformation to rede�ne the Wightman functions so that positive and
negative frequencies are mixed. This simply mixes up the Feynman and anti-Feynman propagator also. For instance,
if one de�nes

G(+)(k) = 2�i�(k2 +m2)[�(k0) + ��(k0) + ��(�k0)]; (60)

then the corresponding Feynman propagator becomes

GF (k) =
1 + �

k2 +m2 � i�
�

�

k2 +m2 + i�
(61)

where the last term is evidently a piece from GAF . Since this only complicates the matter, such rede�nitions will not
be pursued further.
So far, this summary of the action principle has only explicitly encompassed pure state expectation values, which

are comparatively trivial. A statistical system with real particle densities, as well as perhaps a temperature and
entropy, is described by a mixture of such vacuum expectation values (since the character of the actual pure state is
not usually knowable), with the the statistical weight given by the density matrix �. The simplest example of such is
a system in thermal equilibrium (� = exp(��H)). Although a thermal system is quite extraordinary as many particle
systems go, it serves as a useful reference point, both from the viewpoint of formalism and from a physical perspective,
since very many physical systems can be characterized by a temperature of sorts. A statistical expectation value for
some operator X may be written

htjX(t0)jtis �
Trhtj�(t)X(t0)jti

Trhtj�(t)jti
(62)

and characterizes the average value of X at the time t0 given the state of the system at time t. Notice that the trace is
over probabilities of the form htjti rather than amplitudes htjt0i. The latter would be meaningless. The structure of the
expectation value is therefore simply that in equation (14) and the closed time path action principle applies. Indeed,
it is noteworthy that the density matrix itself is merely an operator which can e�ectively by introduced into the pure
state generating functional by functional di�erentiation with respect to an appropriate source. There is therefore no
loss of generality in taking the closed time path action principle at face value and making no special reference to �..
The cyclic property of the trace in (62) has noteworthy implications for the Green functions and sources in the

CTP formalism. Consider the expectation value in (62). This may be rewritten as

hX(t0)is =
Trh�(t)eiH(t0�t)X(t)e�iH(t0�t)

i

Trhtj�(t)jti

=
Trhe�iH(t0�t)�(t)eiH(t0�t)X(t)i

Trhtj�(t)jti
(63)

where H is the Hamiltonian of the system. Using this `relativity' between the time-dependence of � and X, it is
possible to place all of the dynamical development of the system in either one or the other. An example of the use of
density matrix time-development is given in ref. [11]. In the CTP formalism, the distinction between forward moving
times and backward moving times makes equation (63) e�ectively

hX(t0)is =
he�iH�(t

0
�t)�(t)eiH+(t

0
�t)X(t)i

Trhtj�(t)jti
: (64)

The cyclic property of the trace therefore implies that the density matrix � always sits between the + and � branches
of the operator product and hence it must always be re
ected by the o�-diagonal terms in �-space. In the special
case of a thermal density matrix, the same observation leads to the well-known KMS condition [15], by identifying
the inverse-temperature � with imaginary time. This is seen by considering the thermal Wightman function
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G
(+)
� (x; x0) =

Trhtje��H�(x)�(x0)jti

Trhtje��H jti

=
Trhtje��H�(x)e�He��H�(x0)jti

Trhtje��H jti

=
Trhtje��H�(x0)�(x; t+ i�)jti

Trhtje��H jti

= �G(�)(x; t+ i�; x0) (65)

where the cyclic property of the trace has been used. The left and right hand sides are precisely the elements of the
o�-diagonal G+� and G�+. This property is, in fact, su�cient to determine the thermal Green functions.
To determine these, in a form which manifestly reduced to the vacuum case, one writes

G(+)(k) = �2�i[�(k0) +X]�(k2 +m2)

G(�)(k) = 2�i[�(�k0) + Y ]�(k2 +m2) (66)

with X and Y to be determined. Since the commutator function ~G(x; x0) must be independent of the state of the
system (in order to preserve the canonical commutation relations), it follows immediately that X = Y . If one then
employs the KMS condition which, in momentum space, becomes the de�nite relation

G(+)(k) = �e�k0G(�)(k) (67)

it follows that

�(k0) +X = ejk0j�[�(�k0) +X] (68)

and hence

X = �(k0)f(jk0j) = f>0(k0) (69)

where

f(jk0j) =
1

e�jk0j � 1
: (70)

By considering (amongst other things) G(x; x0), it follows that f(jk0j) is an even function of jk0j thus f(k0)�(k0) =
f(�k0)�(�k0), whereupon it is trivial to show the unitarity relation

G(+)(x; x0) = G(�)(x; x0)�: (71)

Note that the fact that G(+) consists only of positive frequencies k0 is pivotal in this derivation. The Feynman
propagator can now be obtained from equation (46) by using the integral representation of the step-function (58).
The thermal Green functions are therefore summarized by

G(+)(k) = �2�i�(k0)[1 + f(jk0j)]�(k
2 +m2) (72)

GF (k) =
1

k2 +m2 � i�
+ 2�if(jk0j)�(k

2 +m2)�(k0): (73)

Another important form of G(�) is obtained by performing the integral over k0, thereby enforcing the role of the
delta-function in (66). This gives a result which will prove more useful for calculations later and is more closely related
to the ansatz used by Lawrie in ref. [3]:

G(+)(x; x0) = �2�i

Z
dn�1k

(2�)n�1
ei(k�(x�x

0)�!(t�t0)) (1 + 2f>0(j!j))

2j!j

= �2�i

Z
dn�1k

(2�)n�1
ei(k�(x�x

0)�!(t�t0)) (1 + f(j!j))

2j!j
(74)

where f>0(k0) is the function composed of only positive frequencies. It is now straightforward to verify that the

canonical commutation relations are satis�ed, by di�erentiating ~G(x; x0) with respect to t0 (see equation (51)).
This completes the presentation of conventions to be used in the remainder of the paper. It is convenient to add

here that a bar (e.g. a) represents an object which is even, while an object with a tilde (e.g. ~a) represents one which
is odd with respect to its arguments.
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III. INTERACTION WITH SOURCES

The formalism demonstrated so far has been for free �elds. Free �elds are always in a state of equilibrium and
therefore the discussion needs to be widened to incorporate collisions or interactions. The present work will deal
with interactions which can be mediated by sources of the type �(x)A(x; x0)�(x0). This includes a variety of self
interactions, contact with external forces and noise or impurity scattering, depending on the nature of A(x; x0). The
self-energy of an interacting �eld theory has this form, for instance, thus sources of the quadratic type can also be a
representation of the lowest order, self-consistent `particle dressings'. In Feynman diagram language, these represent
the re-summed one-loop approximation, Hartree approximation and so on. Lawrie [3] uses the notion of such sources
to e�ect a renormalization (resummation) of perturbation theory in a real scalar �eld theory. The same idea is
expressed in a di�erent language in the work of Calzetta and Hu [1]. Since it is not the aim of this paper to discuss
speci�c models, the speci�c nature of the source terms will not be speci�ed here. Rather the discussion will centre
around what general properties such a system might have and a discussion of possible applications will follow.
In an interacting theory, one normally perturbs about the free �eld theory. Unfortunately, the dispersion relation

(or `mass shell' constraint) for free particles is no longer appropriate, since it re
ects none of the interactions which
`dress' the particles. A more satisfactory starting point would be a `quasi-particle' mass shell, including some of the
interaction e�ects as the basis for a perturbation theory. This is the essence of a renormalization and can be e�ected
by the use of sources [16].
The starting point for the investigation of non-equilibrium �elds will therefore be the closed time path (CTP) action

principle, taking the action S for a neutral scalar boson and supplementing it by quadratic sources. Observing the
CTP operator ordering, one has

S+ � S� ! S+ � S� +
1

2

Z
dVxdVx0 [T (�+(x)A++(x; x

0)�+(x
0))

+ ��(x)A�+(x; x
0)�+(x

0)

+ ��(x
0)A+�(x; x

0)�+(x)

+ T y(��(x)A��(x; x
0)��(x

0))] (75)

It should be clear that no fundamental �eld theory may contain o�-diagonal terms in �-space. The CTP action
principle is, by construction, diagonal, being the di�erence between S+ and S� (see equation (19)). However, it
was remarked earlier that the e�ect of a density matrix must be re
ected in o�-diagonal terms so, while such terms
are certainly not fundamental, they can exist as o�-diagonal self-energies representing the dynamics of a density
matrix. Moreover, since o�-diagonal terms represent a point of contact between �elds moving forward in time and
�elds moving backward in time, one might anticipate that o�-diagonal sources would be at least partly responsible
for choosing an arrow of time (the generation of entropy). The explicit coupling will therefore play an important role
in both non-equilibrium kinematics and dynamics.
The essential unitarity of the CTP formalism is seen, from equations (15) and (16), to be summarized by the

following property of the transformation function:

htijtii
�

�
= htijtii� (76)

namely that complex conjugation merely exchanges + labels with � labels and vice versa. If one de�nes indices
a; b = +;�, then the operator de�ned by the second variation of (75) with respect to the �eld �a, Sab = �a�b(S+�S�),
with Sab = S++ ; S+� : : :, satis�es the relations

S�++(x; x
0) = �S��(x; x

0)

S�+�(x; x
0) = �S�+(x; x0): (77)

This, in turn, implies that Sab may be written in terms of real constants A;B;C and 
�.

Sab(x; x
0) =

0
@ (� +m2)�(x; x0) + A(x; x0) + iC(x; x0) B(x; x0) + 
�(x; x0)

$

D

�

0

�iC(x; x0)

�B(x; x0) � 
�(x; x0)
$

D

�

0

�iC(x; x0) ( �m2)�(x; x0) �A(x; x0) + iC(x; x0)

1
A (78)

where a new derivative has been de�ned to commute with the function 
�(x; x0):

x

D

� �

x

@� +
1

2

�1� (x; x0)

x

@� 
�(x; x
0): (79)
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Note, �rst of all, that the sum of rows and columns in this operator is zero, as required for unitarity and subsequent
causality. Derivatives higher than �rst order in the sources could be rewritten using the �eld equations (still to be
found) and absorbed into other terms, thus such terms are redundant. There can be no non-vanishing terms of
the form �+@�+ without violating time reversal invariance or merely adding total derivatives to the action. Finally
C 6= 0 is clearly disallowed in a fundamental theory on the grounds of unitarity. It turns out, by considering the
�eld equations, that the only fully consistent choice is C = 0, even though such a term does not violate equation
(76). Equation (78) agrees with the form given by Lawrie, up to di�erences in conventions and the inclusion here of
B(x; x0).
The signi�cance of the o�-diagonal terms involving 
� can be seen by writing out the coupling fully:


�(x; x0) �
�
�1D



��2 � �2D



��1
�
: (80)

The term in parentheses has the form of a current between components �1 (the the forward moving �eld) and �2
(the backward moving �eld). When these two are in equilibrium there will be no dissipation to the external reservoir
and these o�-diagonal terms will vanish. This indicates that these o�-diagonal components (which are related to o�-
diagonal density matrix elements, as noted earlier) can be understood as the mediators of a detailed balance condition
for the �eld. A similar conclusion was reached in reference [1] by a di�erent argument for the quantity referred to

here as ~B. When the term is non-vanishing, it represents a current 
owing in one particular direction, pointing out
the arrow of time for either positive or negative frequencies. The current is a `canonical current' and is clearly related
to the fundamental commutator for the scalar �eld in the limit +!�.
Using equation (78) it is now possible to express (75) in the form

SCTP =

Z
dVxdVx0

1

2
�aSab�

b (81)

and thus the closed time path �eld equations may be found by varying this action with respect to the + and � �elds:

�SCTP

��+(x)
= (� +m2)�+(x) +

1

2

Z
dVx0

(
(A+ iC)�+(x

0) + ( ~B � iC)��(x
0) + 
�(@���(x

0)) + @�
���(x
0)

)
(82)

�SCTP

���(x)
= ( �m2)��(x)�

1

2

Z
dVx0

(
(A� iC)�+(x

0) + ( ~B + iC)��(x
0) + 
�(@��+(x

0)) + @�
��+(x
0)

)
(83)

(84)

and setting the right hand side to zero, which introduces the notation

A(x; x0) =
1

2
(A(x; x0) + A(x0; x))

~A(x; x0) =
1

2
(A(x; x0)� A(x0; x))

@�
�(x; x
0) =

1

2

 
x

@� 
�(x; x
0)+

x0

@� 
�(x
0; x)

!
: (85)

The canonical commutation relations which derive from the action principle (see equation (9)) are unchanged by
these modi�cations, since they depend only on x and therefore cancel in the commutator. This is key feature in any
consistent description of non-equilibrium phenomena.
To solve this system of non-local equations, the best strategy will be to look for the Green functions, or the inverse

of the operator Sab. This is the method adopted by Lawrie [3]. Although a common strategy will be used here, the
method will be somewhat di�erent in spirit. The variational approach used in ref. [1] will not be used here. Owing
to the non-locality, it is clear that the inverse operator cannot be a translationally invariant function in the general
case. It must be formally dependent on both Cartesian coordinate di�erences and the average coordinate:

~x �
1

2
(x� x0) (86)

x �
1

2
(x+ x0): (87)

Moreover, since the operator contains o�-diagonal terms, which typically signify a non-trivial density matrix, it is
natural to look for a solution based on the form of equation (72), generalized to include a dependence on x. Although
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this sounds like an innocent step, it is far from a trivial undertaking since it introduces non-linearities in the spectrum
of excitations which must be handled in a self-consistent way. It is useful to work with the quantity H(x; x0), from
which all the Green functions can be obtained (actually the Wightman function in disguise). Using either the �eld
equations or the matrix equation

SabG
bc = � c

a �(x; x
0) (88)

one obtains equations of motion for the quantity H(x; x0) (see equation (53)). Not all of these equations are inde-
pendent, owing to the symmetry in equation (76). In particular, their consistency requires that C = 0 which is now
chosen explicitly. It is su�cient to consider

(� +m2)H(x; x0) +

Z
dVx00

�
A(x; x00)� ~B(x; x0) � 
�(x; x00)

x00

@ � �@�
�(x; x
00)

�
H(x00; x) = 0 (89)

on the understanding that H(x; x0) = H(x0; x)�. This relation is to be supplemented by the canonical commutation
relations for the �eld, which appear in equation (88) in the form

@t0 (H(x; x0)�H(x0; x))

�����
t=t0

= i�(x;x0) (90)

and complete the consistency of the equations of motion.
The next step in obtaining an intuitive formalism is to introduce a (local) momentum space technique by Fourier

transforming ~x and retaining a dependence on the average coordinate x:

H(x; x0) =

Z
dnk

(2�)n
eik(x�x

0)H(k; x): (91)

A suitable ansatz for this function, which generalizes the dispersion relation and the one-particle distribution function
f(k0) is

H(k; x) = 2��(k0)[1 + f(k0; x)]�(�k
2
0 + !2(k; x)): (92)

The spacetime dependent function f(k; x) is often referred to as the Wigner function and signi�es the inhomogeneity
in particle occupation numbers. The generalized dispersion relation takes generic form �k20 + !2 = 0. In the free
particle limit !2 = k

2 +m2. It is the determination of this dispersion relation which is of speci�c importance, since
this determines the spectrum of excitations for particles in the plasma-�eld, and forms the basis of all perturbation
theory when the sources represent self-interactions.
It can be veri�ed that, since H(k; x) depends only on the average coordinate, the commutation relations are

preserved (see equation (90)). A more useful form of (91) is obtained on performing the integration over k0. This
eliminates the dubious derivative of the delta-function from subsequent relations and leads to a number of helpful
insights.

H(x; x0) = 2�

Z
dn�1k

(2�)n�1
eik�(x�x

0)� (1 + f(k0; x))

2j!j
(93)

where it is understood that k0 = j!j. Finally, it is useful to de�ne the derivative with respect to the average coordinate
@ = 1

2
(@x + @x0) and the quantities

F� =
@�f

1 + f
=

1

2
F� =

1

2
@� ln(1 + f) (94)


� =
@�!

!
=

1

2

� =

1

2
@� ln j!j: (95)

IV. DISPERSION RELATIONS

To determine the dispersion relations for given sources it is useful to distinguish three cases which will be referred
to as the local, translationally invariant and inhomogeneous cases respectively. In the local case, the sources are
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proportional to a delta function. In the translationally invariant case A(x; x0) = A(x� x0) and in the inhomogeneous
case A(x; x0) = A(~x; x).
There are two ways in which one can proceed with the determination of the dispersion relations. One is to separate

real and imaginary parts and the other is to used complexi�ed momenta. The latter has several advantages and
makes straightforward contact with the classical theory of normal modes. It will be used exclusively for determining
the spectral relations. Separating real and imaginary parts on the other hand allows one to identify imaginary
contributions as a Boltzmann/Vlasov equation, illustrating nicely the intimate relationship between transport and
dissipation [14].
In order to extract information from the equations it is necessary to undertake an approximation scheme in which

only low order derivatives are kept in x. This is equivalent to an adiabatic (or quasi-static) scheme in which the
development of the system if slow in comparison to 
uctuations, so that fast and slow moving variables separate
in an assumed way. In fact this is already built into the assumed form of the solution for the Green function, since
without such an assumption, there are no grounds for assuming that ~x and x would separate in the prescribed manner.
For most purposes this approximation is quite sound. For the present, there seems to be no way of eliminating the
approximation.

A. Local sources

In the local case, the equation satis�ed by H(x; x0) is

[� +m2 + A(x)� @�
� � 
�@�] = 0: (96)

Note that, since ~B is an odd quantity, it does not appear in the local limit. Since one is interested in the variables
x� x0 and x, it is convenient to Taylor expand x around x. Under the Fourier transform this takes the appearance

A(x)H(x; x0)! [A(x) +
i

2
(@�A)

@

@k�
+ : : :]H(k; x): (97)

It is useful to de�ne a new quantity by

T� =

@f

@k

(1 + f)
(98)

(the steepness of the spectral envelope for the Wigner function) so that

1

H

@H

@k�
= T�

� v�g =! (99)

where vg =
@!
@k

is the group velocity of the dispersing wave-packets. In terms of the quantities (94) and (95) the action
of the spacetime derivative operator on H(x; x0) gives

x

@� H(x; x0) = 2�

Z
dn�1k

(2�)n�1
eik(x�x

0) (1 + f)

2j!j
[ik� + F� � 
�] (100)

and subsequent derivatives are obtained in a straightforward way.
Substituting H(x; x0) into the equation of motion (96) now leads to a second order di�erential equation for the

frequency !(x):

!2 � 2(ik� + F� +
1

2

�)
� + 
2 = k

2 +m2 +A(x) +
i

2
(@�A)(T

�
� v�g =!)

� @�
� � F 2
� 2ik�F� � @�F� � ik�
� � 
�F� (101)

Clearly this equation presents an insurmountable problem for the purposes of analytic calculation, thus an approx-
imation must be made, based on the adiabatic evolution of the average properties of the system. The lowest order
case (which will be su�cient to reveal the features of interest in this paper) is when 
� and derivatives of F� may be
neglected. This corresponds to a near classical transport of particles, with relatively few of the 
uctuations added by
the quantum nature of the �eld. With this approximation the dispersion relation may be written:
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k2 +m2 + A(x) +
i

2
(@�A)(T

�
� v�g =!) � @�
� � F 2

� 2ik�F� � i
�k� � 
�F� = 0: (102)

This can be separated into a more appealing form as the dispersion relation for a damped oscillator array

�!2 � i�! + !20 = R (103)

where one identi�es the natural frequency,

!20 = k
2 +m2

� F 2 (104)

the decay constant,

� = �
1

2!
(@�A)(T

�
� v�g =!) +

2

!
k�(F� �

1

2

�) (105)

and force term

R = 
�F� + @�
� � A(x): (106)

One notices how the e�ective mass of the theory is reduced by the gradient of the Wigner function F�, indicating
that rapid transport could lead to a second order phase transition. This might also lead to anomalous dispersion.
In a true linear oscillator array R, � and !0 would all be independent of the frequency !. In equation (105) only the

zeroth component of the last term is independent of !. This indicates that the decay/ampli�cation of certain modes
in time is oscillator-like, but that the spatial modes are multiplied by a factor of k=!, the inverse phase velocity,
which has a critical value when m=k is a maximum. This signi�es the e�ect which a gap in the frequency spectrum
can have in leading to anomalous dispersion in the `plasma'. At high frequencies �! k0(F0�

1
2
0) and the system is

oscillator-like. At low frequencies, damping is dominated by the external potential A and by transport as one might
expect.

B. Translationally-invariant sources

In the translationally invariant case, all variables are a function of x�x0. One may therefore fully Fourier transform
the sources:

A(x� x0) =

Z
dnk

(2�)n
eik�(x�x

0)�A(k)


�(x� x0) =

Z
dnk

(2�)n
eik�(x�x

0)�
�(k)

~B(x � x0) =

Z
dnk

(2�)n
eik�(x�x

0)�i ~B(k): (107)

Note that, since ~B is an antisymmetric function a factor of i is introduced to keep ~B(k) real. The equation of motion
for H(x; x0) is now

[�
x

+m2]H(x; x0) +

Z
dVx00 [A(x � x00)� ~B(x � x0) � 
�(x� x0)

x00

@ � �(@�
�)]H(x00; x0) = 0: (108)

The translational invariance enables the latter spacetime integral to be performed immediately, yielding the dispersion
relation

k2 +m2 +A(k) � 2ik�
� � i ~B(k) = 0: (109)

An apparent consequence of the translational invariance is that F� = 0 owing to the steady state nature of the system.
Comparing the dispersion relation to equation (103), one identi�es

� =
2

!
k�
� + ~B(k)

!20 = k
2 +m2

R = �A(k) (110)
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Although the translationally invariant theory describes only steady state disequilibria, it is nevertheless seen that the
�eld oscillations are concentrated around the usual mass-shell !20 with an amplitude driven by the external force

A(k)

[(!2 � !20)
2 + (�!)2]

1
2

(111)

and a quality factor Q = !0=�. Such a steady-state description would be appropriate for an `in�nite laser' i.e. a
device which is not a�ected by any �nite size considerations.

C. Inhomogeneous sources

The main case of interest is when the sources and Green functions have a residual dependence on the average
position and time. This includes the local limit as a special case:

A(x; x0) = �(x� x0)�(x + x0)

�! �(x� x0)

� ! A(x) = A(x0): (112)

As usual, one is looking for the eigenspectrum of the quadratic operator acting on H(x; x0). The equation satis�ed
by H(x; x0) is now:

[�
x

+m2]H(x; x0) +

Z
dVx00

�
A(x; x00)� ~B(x; x00)� 
�(x; x00)

x00

@� �@�
�

�
H(x00; x0) = 0 (113)

In the inhomogeneous case there is no dispersion relation consisting of continuous frequencies in general so the
dispersion relation will only exist for a discrete set. It is convenient to divide the discussion into two parts: the
determination of the dispersion relation and the nature of the restricted set of values which satisfy the dispersion
relation.
The problem to be addressed is contained in following form in momentum space:

(� +m2)H(x; x0) +

Z
dVx00

dnk

(2�)n
dnp

(2�)n
eik(x�x

00)+ip(x00�x0)S(p; x00 + x0)H(k; x+ x0) = �H(x; x0): (114)

The integral over x00 is no longer a known quantity in general, but it is possible to extract an overall Fourier transform
by shifting the momentum p! p+ k and de�ning the average variable of interest x = 1

2 (x+ x0):

(k2 + ik�@� �
1

4
+m2)H(k; x) +

+

Z
dVx00

dnp

(2�)n
S(k; x + x00)H(k + p; x00 + x0) = �H(k; x): (115)

In order to �nd eigenvalues, it is necessary to extract the factor of H(k; x) from this expression. This is not possible
for arbitrary values of k. It is possible, however, if the momenta are restricted to a denumerable set expressed by the
property

H(k + p; x00+ x0) = H(k; x00+ x0) (116)

which implies that H(k; x) is a periodic function of the momenta. The absence of eigenvalues or the failure of this
property leads to the consideration of an in�nite iterative mapping of states, which|in the absence of a stable limit|
suggests chaotic excitations of the �eld. This can also be argued geometrically (see the �nal section). Given this
mitigating condition, one hasZ

dVx00
dnp

(2�)n
S(k; x+ x00)H(k + p; x00+ x0) = S(k; x)H(k; x): (117)

The dispersion relation is now obtained in a straightforward fashion, adopting the same adiabatic approximation as
before, and is given by the implicit relation
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k2 +m2 +A(k; x) +
i

2
(@�A)(T

�
� v�g =!) � i ~B(k)

� @�
�(k; x)� (F �N )2 � 2ik�(F �N )� � 2i
�k� � 
�(F �N )� = 0: (118)

where it is noted that fkg is now discontinuous. Note that the antisymmetry of ~B(k) makes it independent of x.
Comparing to the oscillator equation, one has

� = �
1

2!
(@�A)(T

�
� v�g =!) +

2

!
k�(F� �N� + 
�) +

~B(k)

!20 = k
2 +m2

� (F � N )2

R = 
�F� + @�
�(k; x) �A(k; x) (119)

where N� will be de�ned presently.
We now turn to the consequences of the condition in equation (116). There are various precedents for such a relation:

one is Green functions de�ned on a torus (�nite temperature, Matsubara formalism, electron band structure); another
is the case of Landau levels on a torus. The periodicity is clearly the important factor here. In most of these cases
the periodicity is one in real space and the result is a discrete spectrum of eigenvalues. Here the periodicity lies in the
momentum itself. In fact the two notions are closely related and a periodic system in real space has Green functions
which are periodic in momentum space owing to an in�nite summation over discrete frequencies (which is therefore
invariant under shifts by a whole number of periods). The relation (116) must be satis�ed for all legal values of the
momentum, thus the implication is that the system is degenerate|i.e. there exist bands of energy which leave the
Green function invariant under certain shifts. These need not all refer to the same band. It is therefore possible to
write

H(k) = H

 X
l

2�l�k�

P�

!
(120)

where P� is the momentum periodicity length (which has dimensions of inverse space-length). This �nite length must
diverge to in�nity when the inhomogeneities vanish. There is only one natural momentum/length scale which has
these properties, namely

L� = P�1� = @�H(k; x): (121)

In deriving (117) we have used the fact thatZ
dnk

(2�)n
exp(ikx) = �(x) (122)

Since k is now restricted to a discrete set, the correctness of this relation could now be an issue. It can easily be
veri�ed using the formulae

nX
k=1

sin(kx) = sin
(n+ 1)

2
sin

(nx)

2
cosec

x

2

nX
k=0

cos(kx) = sin
(n+ 1)

2
cos

(nx)

2
cosec

x

2
(123)

that an extra �nite imaginary contribution can arise from the discrete nature of the spectrum, which vanishes in the
continuous limit. It will be assumed that such a contribution can be absorbed by a rede�nition of the sources.
Although one is looking at periodic functions, the solution for H(x; x0) need not be sinusoidal. In the case of

Landau levels on the torus [17,18] periodicity is only achieved at the expense of a 
ux-quantization condition which,
again, involves a degeneracy of solutions. There is, in fact, an analogy to this situation here. The extraordinary
properties of Landau levels on a torus can be attributed to the non-translational invariance of the electro-magnetic
vector potential. The similarity here is the non-translational invariance of the many-particle state as expressed by
the dependence on x. This point will be discussed at greater length in the �nal section, to avoid its meaning being
lost in the present analysis.
The extra terms containing N� can now be explained. They arise from the x dependence of the momentum space

measure:
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Z
dnk

(2�)n
!

Y
�

0
@ 1

L�

X
l�

1
A (124)

giving a contribution

N� =
@�(L0 : : :Ln�1)

(L0 : : :Ln�1)
(125)

which compounds the non-linearity. The above restrictions have no special consequences for the Feynman propagator,
since the nature of the momentum is not used to obtain it. This is gratifying since the Feynman propagator must
always be the literal inverse of the quadratic part of the + time-ordered action. Only the nature of the singularity is
altered in accord with the modi�ed dispersion:

GF (k) =
1

�k20 + !2 � i�
+ 2�if(k; x)�(�k20 + !2)�(k0): (126)

The appearance of a natural length scale, connected to the inhomogeneities of a non-equilibrium system, is an
important feature for two reasons. Firstly, the spontaneous generation of a length scale implies the possibility of
domain formation, or a cellular localization in the �eld. Secondly, the dependence of the Green functions on themselves
implies that the stable solutions of the system can be regarded as �xed points of an iterative map. Such maps have
been studied in connection with classical chaotic systems [19].
In the present case, the function H(k; x) depends not merely on itself but on its derivative. For exponential-like

solutions one could expect that this would amount to the same thing, up to a constant multiplier. The situation would
then be something akin to H = H(�H), for some constant �. This bears a noteworthy similarity to Feigenbaum's
functional equation which can be written

g(x) = �g(g(x=�)) (127)

subject to a boundary value, or rewriting:

g(g(�x)) = �g(x): (128)

This equation has an analytic solution as a power series

g(z) = 1 + c1z
2 + c2z

4 + : : : (129)

where a limiting value is approached through a geometric progression with Feigenbaum ration F = 4:66 and universal
scaling factor � = �2:5. Solutions to this equation which fall outside the �xed point behaviour can be expected to
lead to chaotic behaviour. This strongly suggests that the non-equilibrium Green functions must exhibit universal
behaviour or chaos in their approach to stable behaviour. In other words, the approach to equilibrium need not be of
the simple damped or over-damped form of a linear oscillator array|it could easily entail a chaotic attractor.

V. ENTROPY, TEMPERATURE AND THE KMS CONDITION

For systems close enough to a thermal state, it is possible to de�ne an approximate temperature and entropy. The
entropy of the system may be de�ned in various ways, often based only on combinatorial considerations of the micro-
canonical picture. Here it is convenient to de�ne an `oscillator e�ective entropy' which is easily related to quantities
which arise in the analysis. Suppose the Wigner function is given by the approximate equilibrium form

f(k0; x) = (exp(�(x)!(x))� 1)
�1

(130)

then one has

F� = �f2
��

@��

�
+ 
�

�
�!

�
(131)

and, classically, the statistical entropy S is

S = k (lnZ + �h!i) : (132)
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For a harmonic oscillator, one has (see for example ref. [20])

lnZ = �Tr(1� e��!) �
1

2
�h!i; (133)

thus the oscillator entropy may be de�ned as

S =
1

2
�h!i +Tr ln(1 + f): (134)

This motivates the de�nition of a simple measure of entropy for the oscillator array, given by

SE (x) =

Z
dnk

(2�)n
�(k0) ln(1 + f)�(�k20 + !2): (135)

The rate of change of this entropy is then

@�SE = @�

Z
dn�1k

(2�)n�1
ln(1 + f)

2j!j

�����
k>0

=

Z
dn�1k

(2�)n�1
(1 + f)

2j!j
[F� �
�] (136)

This quantity can be compared to (100). It shows that the entropy gradient can be thought of as a `connection' for
the �eld modes. The generation of entropy is therefore fundamentally connected with the 
ow of particle occupation
numbers and the `downgrading' of the frequency spectrum|i.e. the rate at which energy becomes unavailable to do
work.
As mentioned earlier, the e�ect of a non-trivial density matrix, either at the initial time or later, is re
ected in

the o�-diagonal sources and Green functions. If one imagines that the sources A�� arise from a coupling to another
oscillator system [10] or that they represent the self-interaction of the �eld to order �4, then A�� is essentially the
Green function for the �eld concerned and one would therefore expect the KMS condition to hold for the sources at
equilibrium|now in the form

�(j!j)A+�(!) = e�!�(�j!j)A�+(!): (137)

This condition does not hold in general, but for an isoentropic process, in terms of the de�ned quantities at 
� = 0,
one therefore has

~B(!) = �e�! ~B(!) (138)

It is veri�ed that

�(!)A+�(!)

�(�!)A�+ (!)
= e�j!j (139)

giving A+� = sinh(1
2
�j!j)a(!) for some a(!) or

B(!) =
1� e��j!j

1 + e�j!j
= tanh(

1

2
�j!j) (140)

which agrees with Schwinger's result [10]. Note that the initial state f(xi) and its subsequent development enter only
as boundary conditions to the Green functions and the Wigner function. The changing form of f(x) is determined
solely by the sources A��. Thus, if the sources do not evolve, neither does f(x) and neither does the implicit density
matrix. In the perturbation around free �eld theory [1], f(x) always represents the state of the system at the initial
time.
In the approach to equilibrium one normally expects that dependence on the average coordinate x to disappear.

This is an expression of what is often called `loss of memory' of the initial state, since x is measured relative to the
initial time. An equilibrium state (thermal or otherwise) is, by its nature, either static or periodic, thus the resulting
Wigner function f(k0; x) must either be independent of x or a periodic function of this variable. One of the advantages
of the present formulation is that one sees how the sources are responsible for this loss of memory. Since the sources
drive the system, f(k0; x) can never become x independent as long as the sources are x dependent. Thus equilibrium
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will only be secured by accounting for the back-reaction of the sources to the behaviour of the �eld. Explicit equations
of motion for the sources have not been considered here.
An example of a periodic `equilibrium' is the case of Rabi oscillations in the laser (see ref. [21] for a review), in

which the source and the �eld enter into a pendulum-like 
ip-
op behaviour. An example of this will be given in the
�nal section.
The decay of �eld modes is exponential, per mode and is mediated by the source 
�(x; x0) and the gradient of the

potential A(x; x0). This does not preclude other behaviour for the Wigner function. For example, in the simplest case

close to equilibrium in which the system is quasi-static and A = ~B = 0, with almost no external force (see equation
(119)), one has 
� � F� and thus @�F�+F 2

� 0 giving F� � x�1� | a `long tail' power law decay which parallels the
decay of harmonic waves in curved spacetime [22].

VI. CALCULATION OF EXPECTATION VALUES

The closed time path formalism codi�es the causal relationship between source and response, for the computation
of expectation values in a general mixed state. Since it is redundant except as a calculational aid, it's introduction
should be justi�ed by an example. The causality of the method is not a�ected by the introduction of the sources
A��, but the dissipative dynamics are. Normally a fundamental Gaussian theory can never show dissipation, but in
the present situation one has sources which can drive the �eld modes and redistribute energy.
There are two cases of interest. In a self-interacting theory one might identify A�� with the correlation function

for the �eld itself �G��, giving rise to dispersion relation of the approximate form

k2 +m2 + �Tr(k2 +m2)�1 = 0: (141)

This is like the variational method used in ref. [1]. Lawrie [3] takes the view that the sources can e�ect a renormalization
of a self-interacting theory by choosing them in such a way as to `minimize' the e�ect of higher order perturbative
contributions. In either case, the e�ective `resummation' induced by the sources makes it possible to see damping of
�eld modes at the one-loop (Gaussian) level.
Consider the response of the �eld to the source J(x), in the presence of A��. One is interested in the causal

expectation value of the �eld at time t, given the state of the system at the initial time. The time dependence, in
the present formalism is now contained entirely within the sources|or equivalently the dispersion relation. That the
CTP generator leads to a causal result is easily veri�ed by realizing that the expectation value of the �eld is always
coupled to the sources by the retarded n point functions. For an arbitrary action S[�],

h�(x)i = �i
�

�J+(x)

�����
+=�

h0j0i�

=
1

2

Z
dVx0 [2G++(x; x

0) + G+�(x; x
0) +G�+(x; x

0)]J(x0) + : : :

=
1

2

Z
dVx0 [2G++(x; x

0) + G(+)
�G(�)]J + : : :

=

Z
dVx0 [G++(x; x

0) �G(�)]J(x0) + : : :

=

Z
dVx0Gret(x; x

0)J(x0) + : : : (142)

thus the expectation value depends only on retarded times. Furthermore, the result is real (being a probability) since
the retarded Green function is explicitly the real part of the Wightman functions, restricted to retarded times by a
step function:

Gret(x; x
0) = ��(t � t0)[G(+)(x; x0) +G(+)�(x; x0)]: (143)

Making use of the integral representation (58), one has

Gret(x; x
0) = �i

Z
d!

(2�)

dnk

(2�)n
exp(�i!(t � t0) + ik(x � x

0))

(! + i�)

�
G(+)(k) +G(�)(k)

�
: (144)

Relabelling and inserting the momentum-space forms for the Wightman functions from (72), one has
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Gret(k) = �

Z
d!

1

k0 � ! + i�

�
1

!+
�(! � !+)�

1

!�
�(! + !�)

�
(145)

where !+ and �!� are the positive and negative frequency solutions to the appropriate dispersion relation. These are
complex numbers in general, owing to the non-vanishing imaginary part labelled as �. Now, since unitarity demands
that G(+)(x; x0) be the complex conjugate of G(�)(x; x0), it is clear that

!�+ = !�: (146)

It is assumed here that the dispersion relation has two complex roots. The quantity appearing in the delta function in
equation (92) is then �k20 + !+!� which may also be written �k20 + !�!. To avoid confusion with previous notation
for the absolute value, the complex modulus will not be denoted j!j. This indicates that, in spite of the complex
momenta in the dispersion relation, whose role it is to capture dissipation and transport/kinetic e�ects, the `mass
shell' constraint is real. The simplest expression for the retarded Green function is therefore

Gret(k) = �

�
1

2!+(k0 � !+ + i�)
�

1

2!�(k0 � !� + i�)

�
: (147)

This expression is not manifestly real, since it is a momentum space result. However, if one de�nes 2i~! = !� � !+
and 2! = !+ + !�, where ~! and ! are real, then it is possible to write

Gret(k) =
1

!�!

�
(i~!k0 � !�! + 2!2)(�k20 + !�! � 4ik0~!)

(�k20 + !�!)2 + 16k20~!
2

�
: (148)

This may be compared to equation (111) and reduces to

1

�k20 + !2
(149)

when !� = ! and � ! 0. Since the imaginary part of (148) is odd with respect to the momentum variable k,
the Fourier transform back to con�guration space is real, as expected. The desired expectation value is therefore
manifestly real and causal, and the time dependence since the initial time is contained entirely in the x dependence
of the frequency !.

VII. REFORMULATION

In the preceding sections, it has been shown how dissipation and ampli�cation of spectral modes can be incorporated
into the dispersion of a quadratic theory, for suitably adiabatic processes. It is now practical interest to show
that the same results can be presented in another signi�cant form by introducing a `covariant derivative' D� which
commutes with the average development of the �eld state. This description parallels the structure of a gauge theory
(in momentum space) with an imaginary charge. Alternatively one may speak of a generalized chemical potential for
the `gauge' �eld.
Consider the derivative

D� = @� � a� (150)

and its square

D2 = � @�a� � 2a�@� + a�a�: (151)

Without any approximation, it is straightforward to show that, in the general inhomogeneous case,

(� +m2)H(x; x0) = 2 �

Z
dn�1k

(2�)n�1
(1 + f)

2j!j
eik(x�x

0)

f � (ik� + F� � 
� � N�)
2
� @�(ik� + F� �
� �N�)g: (152)

It is then natural to make the identi�cation

a� = F� �
� �N� + 
�

= @�SE(k) �N� + 
� (153)
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where the meaning of this notation is such that the expression only de�ned when all objects are under the momentum
integration|this is to be understood in all future expressions. The �eld a� is clearly related to the rate of increase
of the entropy SE , the damping factor 
� and the rarefaction of the localized cells N�. One now has:

(�D2 +m2)H(x; x0) = 2�

Z
dn�1k

(2�)n�1
(1 + f)

2j!j
f�(ik� � 
�)

2)� @�(ik� � 
�)g

= 2�

Z
dn�1k

(2�)n�1
(1 + f)

2j!j
fk2 + 2ik�
� � 
2 � i(@�k�) + (@�
�)g: (154)

Adding the appropriate source combinations for the inhomogeneous case one has, without approximation, the di�er-
ential equation satis�ed by H(x; x0):�

�D2 +m2 + 
2(k; x) +A(k; x) � ~B(k) +
i

2
(@�A)(T

�
� v�g =!)

�
k

H(x; x0) = 0 (155)

where the appearence of the subscript k to the bracket serves to remind that the equation only exists under the
momentum integral. The local limit is simply

[�D2 +m2
� 
2(x) + A(x)]kH(x; x0) = 0: (156)

The 'gauge' �eld a� couples via an imaginary unit-charge plays the role of a generalized chemical potential on the
manifold of positive energy solutions for the real scalar �eld (the chemical potential has no meaning for the full �eld,
since particle numbers are not conserved). Suppose now that one de�nes the analogue of the �eld strength tensor

f�� = @�a� � @�a�: (157)

In many cases one will have f�� = 0, thus one can 'gauge transform' the �eld, which maps

�(k)! �(k)e

R
a�dx

�

= �(k)e
�

R
(F��
��N��
�)dx

�

= �(k)e
�SE�

R
(N�+
�)dx

�

: (158)

This shows the explicit decay (ampli�cation) of the k-th �eld mode. The latter relation shows that this process
involves an increase in the e�ective oscillator entropy of the system.
In terms of the above formulation, the spectral content of the bosonic theory reduces to the problem of �nding the

eigenvalues of the operator D2. In particular one can use the body of experience gained in the study of gauge theories
to attack the problem. With an adiabatic approximation for f(x; k), a� has a series expansion in powers of x. Thus
for quasi static systems

a� = (c0 + c1x+ : : :)�: (159)

The e�ective �eld strength f�� need not always be zero. Two situations might arise: (i) the Wigner function might
contain a logarithmic singularity, as in the case where vortices are present, and (ii) the source 
� could contain
components which speci�cally drive the macroscopic �eld in a given way. A simple example of the latter is the
analogue of Rabi oscillations in the laser, in which the �eld oscillates between two states in a regular way. Here, this
oscillation is driven by the source 
� or perhaps by a pulsation of the inhomogeneity scale, and occurs from the linear

terms in equation (159). The current J = �2
$

D



�1 behaves like a magnetic in
uence on the system (doing no net
work). Simplifying to the case of a (1 + 1) dimensional system, one may write

a� � 
� = j
j���x
� (160)

for constant j
j and �; � = 0; 1. This corresponds to a harmonic `
ip-
op' motion between �eld and source. It is also
directly analogous to the well known problem of Landau levels in an e�ective magnetic �eld j
j.
The localization in spacetime resulting from the inhomogeneity scale suggests that such oscillations may take place

locally in cellular regions. A simpli�ed model for this is to impose periodic boundary conditions on the cells, generating
a kind of global �eld coherence (this is admittedly motivated by technical simplicity rather than physical reasoning).
One is therefore led to the study of Landau levels on the torus|a system which has been studied at some length
[18,17], and will not be re-analyzed here.
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A signi�cant feature of the Landau problem on the torus is that the periodicity enforces a 
ux quantization condition
on the �eld. Here this translates into the following relation:

@0H(k; x)@1H(k; x)j
j = 2�n (161)

for integer n. This relation indicates that nearest neighbour cells might engage in cooperative oscillations (i.e. the
size of cells is quantized in units of the local inhomogeneity scale). This is clearly a far less stringent condition here
than in the case of a true periodic torus, since the inhomogeneity scale varies in space and time thus the meaning of
strict quantization is lost. However, it indicates that one can expect a tiling of spacetime by oscillation cells. Since the
size of the cells might be highly irregular, the tiling behaviour is most likely to be chaotic unless special geometrical
boundary conditions can enforce a regularity on the �eld. This is an alternative expression of the behaviour deduced
from the Green function in equation (116).

VIII. CONCLUSION

Schwinger's closed time path action principle has been applied to the neutral scalar meson, o�-equilibrium, in the
presence of long-range, inhomogeneous sources. The method of dispersion relations is used to �nd formal expressions
for Green functions which re
ect the absorbative and amplifying processes in the normal modes of the �eld. In the
case of self-interacting theories, the sources can be thought of as representing �2n interactions to one-loop order,
e�ecting a resummation of the theory. The e�ect of rapid transport (large F�) is to induce a change in the sign of
the mass squared, indicating a second order phase transition and anomalous dispersion.
If signi�cant inhomogeneities or long range interactions exist, the �eld naturally forms localized cells with (to lowest

order) a periodic relationship to the natural inhomogeneity length/time scale. This is shown from the viewpoint of the
Green functions and by recourse to an analogy with Landau levels on the torus. Since the length scale is determined
by non-linear considerations one can expect chaotic behaviour with islands of order (stable �xed points) along the
approach to equilibrium. A simple analogue of Rabi oscillations in the laser is shown to arise as a leading order
behaviour in x.
The method used in the this work has the advantage of combining the fundamental aspects of an operator �eld

theory with the usefulness of the action principle. The use of generating functional ultimately leads to functional
integral forms, as used almost exclusively in the literature. However, the introduction of the functional integral is
scarcely necessary using the present method and often has the undesirable e�ect of turning the discussion of causality
into one of complicated paths of integration in the complex plane.
Comparing to other works reveals both di�erences and similarities. Lawrie [3], for example, treats the quantity 
�

as an explicitly written imaginary part of the spectrum of excitations. He ignores F�, but does not ignore 
�. This is
a somewhat di�erent approximation which has a more distant relationship to classical transport theory. In fact, since
the appearance of F� and 
� in a� is identical, up to a sign, the form of dynamics might well be independent of the
approximation used in this work|understandable as a reparameterization of an equivalent problem. Lawrie further
considers �4 theory and uses a renormalization-like philosophy to determine the sources self-consistently thereby
e�ecting a resummation as noted in equation (141). Calzetta and Hu [1] use a variational principle to determine
the e�ective action for a self-interacting boson theory. This is the same idea as in ref. [3], expressed in extremely
aesthetic formalism and containing important insights into the subject; the solution to their method is, in practice,
more di�cult to attain however and thus results are mainly formal. Neither of these works consider the implications
of non-local e�ects. Another interesting approach is the Schr�odinger quantization approach in ref. [11]. This makes a
contact with the Schwinger action principle at a more subtle level and, focusing on somewhat di�erent issues, uncovers
features absent in other formulations of non-equilibrium physics.
It is important to extend the present analysis to include both fermions and spin-1 bosons (true gauge �elds). The

latter is probably a di�cult task in view of the problems which can arise in gauge �xing. Again, the action principle
approach, starting from the operator �eld theory is likely to be the most informative approach. The appearance
of discrete spectra and magnetic like e�ects makes the present work very interesting to the study of the fractional
quantum Hall e�ect. In particular, the pseudo-gauge �eld formulation might have interesting connections with the
statistical gauge �eld employed in the Chern-Simons gauge theory picture. These and other outstanding issues will
be discussed in future work.
I am grateful to I.D. Lawrie for helpful discussions.

APPENDIX A: RETARDED N-POINT FUNCTIONS

The retarded n-point functions are de�ned by
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(n = 0) R(x) = = �(x)

(n = 1) R(x; x1) = = �i�(x � x1)[�(x); �(x1)]

(n > 1) R(x; x1 : : :xn) = (�i)n
X
Pi

�(x � x1)�(x1 � x2) : : : �(xn�1 � xn) �

[[[�(x); �(x1)]; �(x2)] ; : : :�(xn)] (A1)

where Pi signi�es all the permutations of the indices on xi. This is strictly only de�ned when all the xi are di�erent.
The coincidence limit is often de�ned by recourse to the momentum representation.
The retarded functions have the following properties: (i) R(x; x1 : : :xn) vanishes if any xi > x (with respect to the

time), (ii) R(x; x1 : : :xn) is a symmetric function of x1 : : :xn and (iii) the retarded Green functions are always de�ned
with respect to a special point x which is later than all other points.
It may be veri�ed explicitly that the Schwinger-Symanzik generating functional

Zret(x) =
�
T ye�iJ�

� �

�J(x)

�
TeiJ�

�
(A2)

generates the n-point functions according to the rule

R(x; x1 : : : xn) = (�i)n
�n

�Jn
Zret(x)

�����
J=0

: (A3)

The step functions are enforced by explicit cancellation of �eld operators for times outside the bounds of the con-
straints. The above generating functional is clearly related to the closed time path generator, and it is easy to see
that one may also write

R(x; x1 : : : xn)

�
�

�J�
+

�

�J+

�n
(�i)n

�

�J+
h0j0i�

�����
J�=0

: (A4)

Finally, it can be observed that that the Hermite polynomials are generated by the generating functional

Hn(z) = (�1)nez
2 dn

dzn
e�z

2

(A5)

and can therefore be expected to play an important role in the computation of the transformation function for a
quadratic theory.
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