435 research outputs found
Early Results from NASA's Assessment of Satellite Servicing
Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions
A new basic effect in retarding potential analyzers
The Retarding Potential Analyzer (RPA) is the standard instrument for in situ measurement of ion temperature and other ionospheric parameters. The fraction of incoming ions rejected by a RPA produces perturbations that reach well ahead of a thin Debye sheath, a feature common to all
collisionless, hypersonic flows past ion-rejecting bodies. This phenomenon is here found to result in a correction to Whipple’s classical law for the current characteristic of an ideal RPA sheath thin; inverse ram ion Mach number M-1, and ram angle of RPA aperture u, small or moderately small
Recommended from our members
The Distance To The Hyades Cluster Based On Hubble Space Telescope Fine Guidance Sensor Parallaxes
Trigonometric parallax observations made with the Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) 3 of seven Hyades members in six fields of view have been analyzed along with their proper motions to determine the distance to the cluster. Knowledge of the convergent point and mean proper motion of the Hyades is critical to the derivation of the distance to the center of the cluster. Depending on the choice of the proper-motion system, the derived cluster center distance varies by 9%. Adopting a reference distance of 46.1 pc or m - M = 3.32, which is derived from the ground-based parallaxes in the General Catalogue of Trigonometric Stellar Parallaxes (1995 edition), the FK5/PPM proper-motion system yields a distance 4% larger, while the Hanson system yields a distance 2% smaller. The HST FGS parallaxes reported here yield either a 14% or 5% larger distance, depending on the choice of the proper-motion system. Orbital parallaxes (Torres et al.) yield an average distance 4% larger than the reference distance. The variation in the distance derived from the HST data illustrates the importance of the proper-motion system and the individual proper motions to the derivation of the distance to the Hyades center; therefore, a full utilization of the HST FGS parallaxes awaits the establishment of an accurate and consistent proper-motion system.NASA HST GTO, HF-1042.01-93A, HF-1046.01-93A, NAS526555Astronom
Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae
We present an absolute parallax and relative proper motion for the
fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric
data from FGS 3, a white-light interferometer on HST. We find mas. Spectral classifications and VRIJHKTM and DDO51 photometry of
the astrometric reference frame surrounding RR Lyr indicate that field
extinction is low along this line of sight. We estimate =0.07\pm0.03 for
these reference stars. The extinction suffered by RR Lyr becomes one of the
dominant contributors to the uncertainty in its absolute magnitude. Adopting
the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61
^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 -
18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr
variables in the LMC, , remaining a significant uncertainty. We compare
this result to more than 80 other determinations of the distance modulus of the
LMC.Comment: Several typos corrected. To appear in The Astronomical Journal,
January 200
Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers
General relativistic deflection of light by mass, dipole, and quadrupole
moments of gravitational field of a moving massive planet in the Solar system
is derived. All terms of order 1 microarcsecond are taken into account,
parametrized, and classified in accordance with their physical origin. We
calculate the instantaneous patterns of the light-ray deflections caused by the
monopole, the dipole and the quadrupole moments, and derive equations
describing apparent motion of the deflected position of the star in the sky
plane as the impact parameter of the light ray with respect to the planet
changes due to its orbital motion. The present paper gives the physical
interpretation of the observed light-ray deflections and discusses the
observational capabilities of the near-future optical (SIM) and radio (SKA)
interferometers for detecting the Doppler modulation of the radial deflection,
and the dipolar and quadrupolar light-ray bendings by the Jupiter and the
Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.
The Electron Drift Instrument on Cluster: overview of first results
International audienceEDI measures the drift velocity of artificially injected electron beams. From this drift velocity, the perpendicular electric field and the local magnetic field gradients can be deduced when employing different electron energies. The technique requires the injection of two electron beams at right angles to the magnetic field and the search for those directions within the plane that return the beams to their associated detectors after one or more gyrations. The drift velocity is then derived from the directions of the two beams and/or from the difference in their times-of-flight, measured via amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. After careful adjustment of the control parameters, the beam recognition algorithms, and the onboard magnetometer calibrations during the commissioning phase, EDI is providing excellent data over a wide range of conditions. In this paper, we present first results in a variety of regions ranging from the polar cap, across the magnetopause, and well into the magnetosheath
- …