24,029 research outputs found
Configurable unitary transformations and linear logic gates using quantum memories
We show that a set of optical memories can act as a configurable linear
optical network operating on frequency-multiplexed optical states. Our protocol
is applicable to any quantum memories that employ off-resonant Raman
transitions to store optical information in atomic spins. In addition to the
configurability, the protocol also offers favourable scaling with an increasing
number of modes where N memories can be configured to implement an arbitrary
N-mode unitary operations during storage and readout. We demonstrate the
versatility of this protocol by showing an example where cascaded memories are
used to implement a conditional CZ gate.Comment: 5 pages, 2 figure
The Detectability Limit of Organic Molecules Within Mars South Polar Laboratory Analogs
A series of laboratory experiments was carried out in order to generate a diagnostic spectrum for Polycyclic Aromatic Hydrocarbons (PAHs) of astrobiological interest in the context of the Martian South Polar Residual Cap (SPRC), to establish PAH spectral features more easily detectable in CO2 ice (mixed with small amounts of H2O ice) than the previously reported absorption feature at 3.29 µm in order to constrain their detectability limit. There is currently no existing literature on PAH detection within SPRC features, making this work novel and impactful given the recent discovery of a possible subglacial lake beneath the Martian South Pole. Although they have been detected in Martian meteorites, PAHs have not been detected yet on Mars, possibly due to the deleterious effects of ultraviolet radiation on the surface of the planet. SPRC features may provide protection to fragile molecules, and this work seeks to provide laboratory data to improve interpretation of orbital remote sensing spectroscopic imaging data. We also ascertain the effect of CO2 ice sublimation on organic spectra, as well as provide PAH reference spectra in mixtures relevant to Mars. A detectability limit of ∼0.04% has been recorded for observing PAHs in CO2 ice using laboratory instrument parameters emulating those of the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), with new spectral slope features revealed between 0.7 and 1.1 µm, and absorption features at 1.14 and, most sensitively, at 1.685 µm. Mars regolith analogue mixed with a concentration of 1.5% PAHs resulted in no discernible organic spectral features. These detectability limits measured in the laboratory are discussed and extrapolated to the effective conditions on the Mars South Polar Cap in terms of dust and water ice abundance and CO2 ice grain size for both the main perennial cap and the H2O ice-dust sublimation lag deposit
Quantum darwinism in a composite system: Objectivity versus classicality
We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an N-qubit environment via a dephasing interaction. For excitation preserving interactions between the system qubits, an analytical expression for the dynamics is obtained. It demonstrates that part of the system Hilbert space redundantly proliferates its information to the environment, while the remaining subspace is decoupled and preserves clear non-classical signatures. For measurements performed on the system, we establish that a non-zero quantum discord is shared between the composite system and the environment, thus violating the conditions of strong Darwinism. However, due to the asymmetry of quantum discord, the information shared with the environment is completely classical for measurements performed on the environment. Our results imply a dichotomy between objectivity and classicality that emerges when considering composite systems
Recommended from our members
Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site.
Chromosome segregation begins when the cysteine protease, separase, cleaves the Scc1 subunit of cohesin at the metaphase-to-anaphase transition. Separase is inhibited prior to metaphase by the tightly bound securin protein, which contains a pseudosubstrate motif that blocks the separase active site. To investigate separase substrate specificity and regulation, here we develop a system for producing recombinant, securin-free human separase. Using this enzyme, we identify an LPE motif on the Scc1 substrate that is distinct from the cleavage site and is required for rapid and specific substrate cleavage. Securin also contains a conserved LPE motif, and we provide evidence that this sequence blocks separase engagement of the Scc1 LPE motif. Our results suggest that rapid cohesin cleavage by separase requires a substrate docking interaction outside the active site. This interaction is blocked by securin, providing a second mechanism by which securin inhibits cohesin cleavage
Critical Behavior of Non Order-Parameter Fields
We show that all of the relevant features of a phase transition can be
determined using a non order parameter field which is a physical state of the
theory. This fact allows us to understand the deconfining transition of the
pure Yang-Mills theory via the physical excitations rather than using the
Polyakov loop.Comment: RevTeX, 4-pages, 1 figur
Tunable Electron Multibunch Production in Plasma Wakefield Accelerators
Synchronized, independently tunable and focused J-class laser pulses are
used to release multiple electron populations via photo-ionization inside an
electron-beam driven plasma wave. By varying the laser foci in the laboratory
frame and the position of the underdense photocathodes in the co-moving frame,
the delays between the produced bunches and their energies are adjusted. The
resulting multibunches have ultra-high quality and brightness, allowing for
hitherto impossible bunch configurations such as spatially overlapping bunch
populations with strictly separated energies, which opens up a new regime for
light sources such as free-electron-lasers
Gradient echo quantum memory in warm atomic vapor
Video Article - http://www.jove.com/video/50552Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.Olivier Pinel, Mahdi Hosseini, Ben M. Sparkes, Jesse L. Everett, Daniel Higginbottom, Geoff T. Campbell, Ping Koy Lam, Ben C. Buchle
Extreme times in financial markets
We apply the theory of continuous time random walks to study some aspects of
the extreme value problem applied to financial time series. We focus our
attention on extreme times, specifically the mean exit time and the mean
first-passage time. We set the general equations for these extremes and
evaluate the mean exit time for actual data.Comment: 6 pages, 3 figure
- …