30,527 research outputs found

    Lathe attachment used to machine elliptical cones

    Get PDF
    Close-tolerance elliptical cones are fabricated by cutting-tool guide assembly used with conventional tracer cartridge on turret lathe accurately produced in two machine operations

    Apparatus for machining geometric cones Patent

    Get PDF
    Rotary spindle lathe attachments for machining geometrical cone

    A uniform metallicity in the outskirts of massive, nearby galaxy clusters

    Get PDF
    Suzaku measurements of a homogeneous metal distribution of Z∼0.3Z\sim0.3 Solar in the outskirts of the nearby Perseus cluster suggest that chemical elements were deposited and mixed into the intergalactic medium before clusters formed, likely over 10 billion years ago. A key prediction of this early enrichment scenario is that the intracluster medium in all massive clusters should be uniformly enriched to a similar level. Here, we confirm this prediction by determining the iron abundances in the outskirts (r>0.25r200r>0.25r_{200}) of a sample of ten other nearby galaxy clusters observed with Suzaku for which robust measurements based on the Fe-K lines can be made. Across our sample the iron abundances are consistent with a constant value, ZFe=0.316±0.012Z_{\rm Fe}=0.316\pm0.012 Solar (χ2=28.85\chi^2=28.85 for 25 degrees of freedom). This is remarkably similar to the measurements for the Perseus cluster of ZFe=0.314±0.012Z_{\rm Fe}=0.314\pm0.012 Solar, using the Solar abundance scale of Asplund et al. (2009).Comment: accepted for publication in MNRA

    Witnessing the Growth of the Nearest Galaxy Cluster: Thermodynamics of the Virgo Cluster Outskirts

    Get PDF
    We present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long `arms' extending beyond the virial radius. The entropy profiles along all four azimuths increase with radius, then level out beyond 0.5r2000.5r_{200}, while the average pressure at large radii exceeds Planck Sunyaev-Zel'dovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the cluster's outskirts. Using a standard Navarro, Frenk and White (1997) model, we estimate a virial mass, radius, and concentration parameter of M200=1.05±0.02×1014M_{200}=1.05\pm0.02\times10^{14} M⊙_\odot, r200=974.1±5.7r_{200}=974.1\pm5.7 kpc, and c=8.8±0.2c = 8.8 \pm0.2, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at r∼r200r\sim r_{200} along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north-south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of ∼90×180\sim 90\times180 kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2-3.Comment: submitted to MNRA

    BRST quantization of the massless minimally coupled scalar field in de Sitter space (zero modes, euclideanization and quantization)

    Full text link
    We consider the massless scalar field on the four-dimensional sphere S4S^4. Its classical action S=12∫S4dV(∇ϕ)2S={1\over 2}\int_{S^4} dV (\nabla \phi)^2 is degenerate under the global invariance ϕ→ϕ+constant\phi \to \phi + \hbox{constant}. We then quantize the massless scalar field as a gauge theory by constructing a BRST-invariant quantum action. The corresponding gauge-breaking term is a non-local one of the form SGB=12αV(∫S4dVϕ)2S^{\rm GB}={1\over {2\alpha V}}\bigl(\int_{S^4} dV \phi \bigr)^2 where α\alpha is a gauge parameter and VV is the volume of S4S^4. It allows us to correctly treat the zero mode problem. The quantum theory is invariant under SO(5), the symmetry group of S4S^4, and the associated two-point functions have no infrared divergence. The well-known infrared divergence which appears by taking the massless limit of the massive scalar field propagator is therefore a gauge artifact. By contrast, the massless scalar field theory on de Sitter space dS4dS^4 - the lorentzian version of S4S^4 - is not invariant under the symmetry group of that spacetime SO(1,4). Here, the infrared divergence is real. Therefore, the massless scalar quantum field theories on S4S^4 and dS4dS^4 cannot be linked by analytic continuation. In this case, because of zero modes, the euclidean approach to quantum field theory does not work. Similar considerations also apply to massive scalar field theories for exceptional values of the mass parameter (corresponding to the discrete series of the de Sitter group).Comment: This paper has been published under the title "Zero modes, euclideanization and quantization" [Phys. Rev. D46, 2553 (1992)

    On the universality of the scaling of fluctuations in traffic on complex networks

    Full text link
    We study the scaling of fluctuations with the mean of traffic in complex networks using a model where the arrival and departure of "packets" follow exponential distributions, and the processing capability of nodes is either unlimited or finite. The model presents a wide variety of exponents between 1/2 and 1 for this scaling, revealing their dependence on the few parameters considered, and questioning the existence of universality classes. We also report the experimental scaling of the fluctuations in the Internet for the Abilene backbone network. We found scaling exponents between 0.71 and 0.86 that do not fit with the exponent 1/2 reported in the literature.Comment: 4 pages, 4 figure

    A Uniform Contribution of Core-Collapse and Type Ia Supernovae to the Chemical Enrichment Pattern in the Outskirts of the Virgo Cluster

    Full text link
    We present the first measurements of the abundances of α\alpha-elements (Mg, Si, and S) extending out to beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intra-cluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r200r_{200}). Chemical enrichment of the intergalactic medium due solely to core collapse supernovae (SNcc) is excluded with very high significance; instead, the measured metal abundance ratios are generally consistent with the Solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and type Ia supernovae (SNIa) contributing to the metal budget during the period of peak star formation activity at redshifts of 2-3. We estimate the ratio between the number of SNIa and the total number of supernovae enriching the intergalactic medium to be between 12-37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SNIa contribution estimated for the cluster cores.Comment: accepted for publication in ApJ

    Slow polaritons with orbital angular momentum in atomic gases

    Full text link
    Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms influenced by two control laser beams of larger intensity. The laser beams couple resonantly three hyperfine atomic ground states to a common excited state thus forming a tripod configuration of the atomic energy levels involved. The first control beam can have an optical vortex with the intensity of the beam going to zero at the vortex core. The second control beam without a vortex ensures the loseless (adiabatic) propagation of the probe beam at a vortex core of the first control laser. We investigate the storage of the probe pulse into atomic coherences by switching off the control beams, as well as its subsequent retrieval by switching the control beams on. The optical vortex is transferred from the control to the probe fields during the storage or retrieval of the probe field. We analyze conditions for the vortex to be transferred efficiently to the regenerated probe beam and discuss possibilities of experimental implementation of the proposed scheme using atoms like rubidium or sodium.Comment: 4 figure

    Two-gap superconductivity in MgB2_{2}: clean or dirty?

    Get PDF
    A large number of experimental facts and theoretical arguments favor a two-gap model for superconductivity in MgB2_{2}. However, this model predicts strong suppression of the critical temperature by interband impurity scattering and, presumably, a strong correlation between the critical temperature and the residual resistivity. No such correlation has been observed. We argue that this fact can be understood if the band disparity of the electronic structure is taken into account, not only in the superconducting state, but also in normal transport

    Optimal routing on complex networks

    Full text link
    We present a novel heuristic algorithm for routing optimization on complex networks. Previously proposed routing optimization algorithms aim at avoiding or reducing link overload. Our algorithm balances traffic on a network by minimizing the maximum node betweenness with as little path lengthening as possible, thus being useful in cases when networks are jamming due to queuing overload. By using the resulting routing table, a network can sustain significantly higher traffic without jamming than in the case of traditional shortest path routing.Comment: 4 pages, 5 figure
    • …
    corecore