827 research outputs found
Laboratory observations of midwater spawning by Illex illecebrosus
Visual observations and video-tape records were made for the first time of mid-water spawning by Illex illecebrosus in the Aquatron Laboratory pool tank. Coupled with data on the density of egg masses, they allow some conclusions to be drawn concerning possible mid-water spawning sites in nature
Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates
Fentanyl is a powerful opiate analgesic typically used for the treatment of severe and chronic pain, but its prescription is strongly limited by the well-documented side-effects. Different approaches have been applied to develop strong analgesic drugs with reduced pharmacologic side-effects. One of the most promising is the design of multitarget drugs. In this paper we report the synthesis, characterization and biological evaluation of twelve new 4-anilidopiperidine (fentanyl analogues). In vivo hot-Plate test, shows a moderate antinociceptive activity for compounds OMDM585 and OMDM586, despite the weak binding affinity on both Ό and Ύ-opioid receptors. A strong inverse agonist activity in the GTP-binding assay was revealed suggesting the involvement of alternative systems in the brain. Fatty acid amide hydrolase inhibition was evaluated, together with binding assays of cannabinoid receptors. We can conclude that compounds OMDM585 and 586 are capable to elicit antinociception due to their multitarget activity on different systems involved in pain modulation. © 2016 Informa UK Limited, trading as Taylor & Francis Group
Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 Ă 106âA·cmâ2, or about 1 Ă 1025 electrons sâ1 cmâ2. This relatively high current density significantly affects the devicesâ structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions
Fast approximation of centrality and distances in hyperbolic graphs
We show that the eccentricities (and thus the centrality indices) of all
vertices of a -hyperbolic graph can be computed in linear
time with an additive one-sided error of at most , i.e., after a
linear time preprocessing, for every vertex of one can compute in
time an estimate of its eccentricity such that
for a small constant . We
prove that every -hyperbolic graph has a shortest path tree,
constructible in linear time, such that for every vertex of ,
. These results are based on an
interesting monotonicity property of the eccentricity function of hyperbolic
graphs: the closer a vertex is to the center of , the smaller its
eccentricity is. We also show that the distance matrix of with an additive
one-sided error of at most can be computed in
time, where is a small constant. Recent empirical studies show that
many real-world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others) have
small hyperbolicity. So, we analyze the performance of our algorithms for
approximating centrality and distance matrix on a number of real-world
networks. Our experimental results show that the obtained estimates are even
better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates
It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations
Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations
Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus
- âŠ