1,948 research outputs found

    An effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering

    Full text link
    Small angle neutron scattering intensity distributions taken from cytochrome C and lysozyme protein solutions show a rising intensity at very small wave vector, Q, which can be interpreted in terms of the presence of a weak long-range attraction between protein molecules. This interaction has a range several times that of the diameter of the protein molecule, much greater than the range of the screened electrostatic repulsion. We show evidence that this long-range attraction is closely related to the type of anion present and ion concentration in the solution

    The Origin of Tunneling Anisotropic Magnetoresistance in Break Junctions

    Full text link
    First-principles calculations of electron tunneling transport in Ni and Co break junctions reveal strong dependence of the conductance on the magnetization direction, an effect known as tunneling anisotropic magnetoresistance (TAMR). The origin of this phenomenon stems from resonant states localized in the electrodes near the junction break. The energy and broadening of these states is strongly affected by the magnetization orientation due to spin-orbit coupling, causing TAMR to be sensitive to bias voltage on a scale of a few mV. Our results bear a resemblance to recent experimental data and suggest that TAMR driven by resonant states is a general phenomenon typical for magnetic broken contacts and other experimental geometries where a magnetic tip is used to probe electron transport.Comment: 4 pages, 3 figure

    Alternative pathways of dewetting for a thin two-layer film of soft matter

    Full text link
    We consider two stacked ultra-thin layers of different liquids on a solid substrate. Using long-wave theory, we derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Linear and non-linear analyses show that depending on the long-range van-der-Waals forces and the ratio of the layer thicknesses, the system follows different pathways of dewetting. The instability may be driven by varicose or zigzag modes and leads to film rupture either at the liquid-gas interface or at the substrate

    Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films

    Get PDF
    The dynamics of micrometer-size polystyrene latex particles confined in thinning foam films was investigated by microscopic interferometric observation. The behavior of the entrapped particles depends on the mobility of the film surfaces, the particle concentration, hydrophobicity, and rate of film formation. When the films were stabilized by sodium dodecyl sulfate, no entrapment of particles between the surfaces was possible. When protein was used as a stabilizer, a limited number of particles were caught inside the film area due to the decreased mobility of the interfaces. In this case, extraordinary long-ranged (>100 ĂŚm) capillary attraction leads to two-dimensional (2D) particle aggregation. A major change occurs when the microspheres are partially hydrophobized by the presence of cationic surfactant. After the foam films are opened and closed a few times, a layer of particles simultaneously adsorbed to the two interfaces is formed, which sterically inhibits any further film opening and thinning. The particles within this layer show an excellent 2D hexagonal ordering. The experimental data are relevant to the dynamics of defects in coating films, Pickering emulsions, and particle assembly into 2D arrays

    Gel transitions in colloidal suspensions

    Full text link
    The idealized mode coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures MCT predicts a slowing down of the local dynamics and ergodicity breaking transitions. The nonergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the nonergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical nonergodicity parameters, motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J. Phys.: Condens. Matte

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
    • …
    corecore