19,783 research outputs found

    Consequences of Approximate S3S_3 Symmetry of the Neutrino Mass Matrix

    Full text link
    Assuming that the neutrino mass matrix is dominated by a term with the permutation symmetry S3S_{\scriptscriptstyle 3} it is possible to explain neutrino data only if the masses are quasi-degenerate. A sub-dominant term with an approximate μτ\mu -\tau symmetry leads to an approximate tri-bimaximal form. Experimental consequences are discussed.Comment: 7 pages, 2 figures, 1 table, RevTe

    Measurement of high-order polarization mode dispersion

    Get PDF
    We demonstrate a new method to measure high-order polarization mode dispersion (PMD) using the Jones matrix exponential expansion. High-order PMD is characterized by measuring a series of characteristic matrices, which are convenient quantities for analyzing PMD effects in the time-domain. An experimental method is developed to estimate the validity range of the exponential expansion

    Instabilities and the roton spectrum of a quasi-1D Bose-Einstein condensed gas with dipole-dipole interactions

    Full text link
    We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a `roton' minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect to tune the depth of this `roton' minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.Comment: 7 pages, 6 figures. Special Issue: "Ultracold Polar Molecules: Formation and Collisions

    A fundamental approach to the sticking of insect residues to aircraft wings

    Get PDF
    The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained

    Local fluctuations of vibrational polaritons monitored by two-dimensional infrared spectroscopy

    Full text link
    We study the collective behavior of molecules placed in an infrared (IR) microcavity, incorporating the local fluctuations, i.e., dynamical disorder. The cooperative feature in vibrational polaritons is shown to be dynamically eroded, due to intermolecule coherence. To further resolve such process, we develop a two-dimensional infrared spectroscopy (2D-IR) for molecules interacting with cavity modes. The cooperative feature in correspondence to the spectroscopic signal is specified. The results reveal the dark states by the cross peaks apart from the ones for polaritons, as a result of the breakdown of cooperativity between molecules. We further show that the breakdown of cooperativity profoundly connects to the localization of the vibrational excitations whereas the polariton modes are extended wave over several molecules. Besides, our work offers new physical insight for understanding the recent 2D-IR experiments where the interaction between dark modes and bright polaritons was evident.Comment: 11 pages, 6 figure

    Integrable Minisuperspace Models with Liouville Field: Energy Density Self-Adjointness and Semiclassical Wave Packets

    Get PDF
    The homogeneous cosmological models with a Liouville scalar field are investigated in classical and quantum context of Wheeler-DeWitt geometrodynamics. In the quantum case of quintessence field with potential unbounded from below and phantom field, the energy density operators are not essentially self-adjoint and self-adjoint extensions contain ambiguities. Therefore the same classical actions correspond to a family of distinct quantum models. For the phantom field the energy spectrum happens to be discrete. The probability conservation and appropriate classical limit can be achieved with a certain restriction of the functional class. The appropriately localized wave packets are studied numerically using the Schrodinger's norm and a conserved Mostafazadeh's norm introduced from techniques of pseudo-Hermitian quantum mechanics. These norms give a similar packet evolution that is confronted with analytical classical solutions.Comment: Main points emphasized, less important material shortened; 24 pages, 13 figure

    Scraping social media photos posted in Kenya and elsewhere to detect and analyze food types

    Full text link
    Monitoring population-level changes in diet could be useful for education and for implementing interventions to improve health. Research has shown that data from social media sources can be used for monitoring dietary behavior. We propose a scrape-by-location methodology to create food image datasets from Instagram posts. We used it to collect 3.56 million images over a period of 20 days in March 2019. We also propose a scrape-by-keywords methodology and used it to scrape ∼30,000 images and their captions of 38 Kenyan food types. We publish two datasets of 104,000 and 8,174 image/caption pairs, respectively. With the first dataset, Kenya104K, we train a Kenyan Food Classifier, called KenyanFC, to distinguish Kenyan food from non-food images posted in Kenya. We used the second dataset, KenyanFood13, to train a classifier KenyanFTR, short for Kenyan Food Type Recognizer, to recognize 13 popular food types in Kenya. The KenyanFTR is a multimodal deep neural network that can identify 13 types of Kenyan foods using both images and their corresponding captions. Experiments show that the average top-1 accuracy of KenyanFC is 99% over 10,400 tested Instagram images and of KenyanFTR is 81% over 8,174 tested data points. Ablation studies show that three of the 13 food types are particularly difficult to categorize based on image content only and that adding analysis of captions to the image analysis yields a classifier that is 9 percent points more accurate than a classifier that relies only on images. Our food trend analysis revealed that cakes and roasted meats were the most popular foods in photographs on Instagram in Kenya in March 2019.Accepted manuscrip

    Bose-Einstein condensation of trapped interacting spin-1 atoms

    Full text link
    We investigate Bose-Einstein condensation of trapped spin-1 atoms with ferromagnetic or antiferromagnetic two-body contact interactions. We adopt the mean field theory and develop a Hartree-Fock-Popov type approximation in terms of a semiclassical two-fluid model. For antiferromagnetic interactions, our study reveals double condensations as atoms in the mF=0>|m_F=0> state never seem to condense under the constraints of both the conservation of total atom number NN and magnetization MM. For ferromagnetic interactions, however, triple condensations can occur. Our results can be conveniently understood in terms of the interplay of three factors: (anti) ferromagnetic atom-atom interactions, MM conservation, and the miscibilities between and among different condensed components.Comment: RevTex 4, 9 pages, 5 eps figures, to appear in Phys. Rev. A, vol 70, p

    Universal Central Extensions of Gauge Algebras and Groups

    Get PDF
    We show that the canonical central extension of the group of sections of a Lie group bundle over a compact manifold, constructed in [NW09], is universal. In doing so, we prove universality of the corresponding central extension of Lie algebras in a slightly more general setting.Comment: 9 pages, LaTeX. Changes w.r.t. version 2: minor changes (final version). To appear in J. Reine Angew. Mat

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples
    corecore