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Investigation of Factors Affecting the Sticking

of Insects on Aircraft Wing Surfaces

Theaircraft industry is concerned with the increase of drag on planes due to the sticking of

insects on critical airfoil areas. The objectives of the present study were to investigate the

effects of surface energy and elasticity on the number of insects sticking onto the polymer

coatings on a modified aircraft wing and to determine the mechanism by which insects

stick onto surfaces during a high-velocity impact. Analyses including scanning electron

microscopy (SEM), electron spectroscopy for chemical analysis (ESCA) ant' contact angle

measurements of uncoated and polymer-coated aluminum surfaces have been performed. An

air-gun was designed to accelerate insects to high speeds and impact them onto modified

wing surfaces in a laboratory environment.

A direct relation between the number of insects sticking on a sample and its surface energy

was obtained. Since the sticky liquid from a burst-open insect will not spread on the low

energy surface, it will ball up providing poor adhesion between the insect debris and the

surface. The incoming air flow can easily blow off the insect debris thus reducing the

number of insects that remain stuck on the surface. Also a direct relation between the

number of insect sticking onto sample surfaces and their moduli of elasticity was obtained.

The deceleration of an insect impacting onto an elastomer reduces in proportional to the

modulus of elasticity of the material. As a consequence, the rate of change of momentum is

lower and the force and pressure exerted on the body of the insect is reduced if it impacts

onto a material with a low modulus of elasticity. This lessens the chance of bursting the

insect exoskehton.
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Chapter 1

Introduction and Overview

NASA's half-billion dollar Aircraft Energy Efficiency (ACEE) program, which started in

1976, is a jointly funded research and technology effort between NASA and industry [1,2].

Commercial jet aircraft energy consumption was the primary factor in the ACEE program,

and the development and demonstration of advanced technologies applicable to transport

aircraft has been mainly emphasized [3]. The ACEE program has focused on four aircraft

technology areas: advanced aerodynamics, flight control, composite structures, and laminar

flow[3].

Fuel has been the major portion of the direct operating cost for airlines. High fuel costs

due to rapid increase in airline fuel prices, and commercial aviation fuel consumption have

continued to cause serious financial problems for aircraft industries [3]. Due to other factors

such as cost of capital, load factors, fuel efficiency, airline regulations, foreign competition,

and environmental regulations, the ACEE airframe technology has become important [4].
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1.1 Laminar Flow

One of the ACEE programs is the development of technology for viscous drag reduction

through laminar flow. Higher fuel efficiencies in aircraft may be achieved using a wing

design which has maximum aerodynamic efficiency by reducing drag and minimizing wing

size and weight [5]. The essential condition for achieving a significant reduction of drag on

the airplane is obtaining laminar flow over airfoil surfaces, which has no boundary layer

separation, and an absence of turbulence. Laminar flow can be achieved either by the use

of suction through the wing structure to remove the boundary layer (laminar flow control)

or encouragement of natural laminar flow [3,6].

Suction for laminar flow control through the wing surface can be obtained by millions of

holes created on the surface by an electron beam. A sufficiently smooth and wave-free

surface is an essential factor in accomplishing laminar flow. The maintenance of wing-

surface quality in normal service is also essential. With assistance from advanced material

technology, smoothness required for a laminar flow control surface can be easily achieved,

and the fuel savings for a laminar flow control aircraft would be approximately 20% to

22% [6].

1.2 Wing Contamination of Laminar Flow Control Airfoils

A smooth leading edge is essential for maintaining laminar flow. Roughness created on the

leading edge by icing, frost and insects have a great affect on the boundary layer at the

leading edge, where a allowable height of roughness particle size is only between 0.10 and

0.15 mm [5,7]. Roughness in the laminar flow-region of an airfoil interrupts smooth laminar

flow and promotes a transition from laminar to turbulent flow by creating eddies, while

roughness in the turbulent region increases the turbulent friction coefficient which in turn

increases the drag coefficient [7].
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Luers [7]statedthat the roughness due to icingand froston the airfoilnot only reduces

performance but alsothreatensaircraftsafety.Iceaccretionon the wing can be dangerous

when the plane entersintoa cloud of supercooledwater droplets,while frostcan cause

danger during take-off.Because of theirroughness and the shape change produced on the

airfoil,freezingiceand rainand a heavy layeroffrosthave causeda largenumber ofaviation

accidents.For example, 49 generalaviationaccidentsin 1979 were mainly caused by icing.

1.2.1 Wing Contamination due to Insect Debris

Although roughness due to insect debris collected on the leading edge is not a safety problem,

decrease in performance has been of great concern. Insect contamination usually occurs on

aircrafts at low altitudes below about 152 m corresponding to take-off and initial climb [8,9].

These insects remain on the leading edge of the wing causing an early transition of the

laminar boundary layer to turbulence during cruise flight. A significant increase in drag

occurs and the fuel savings expected for laminar flow can not be achieved [10].

An insectconsistsof many differentchemicalcompounds [11-13],but itisunnecessaryto

discussdetailsof theirchemistryherein. These compounds determine the spreading and

adhesion of the burst-opened insectbody on a solidsurface. When the insectimpacts

a surface,the stresscauses the cuticleof the insectto crack or split.Depending on the

mechanicalpropertiesofthe insectcuticle,the impactingforcewillhave differenteffectson

the insectbody.

The cuticleof an insectfunctionsas an exoskeletonand as a barrierbetween the living

tissuesand the environment [14].The cuticleismost prominentlya skeleton,which consists

ofcomplex composite materials[15].The mechanical propertiesofsuch compositesdepend

on the individualpropertiesand interactionof components. The tensilepropertiesof some

insectcuticleshave been studiedby Hepburn etal. [15-20].Itwas found that most insect

cuticlesarestiff,highlyplastic,or intermediatesbetween thesetwo. The stiffcuticles,which



4

shows high relative stiffness, high tensile modulus and low breaking strains, usually fail in

tension [14,15]. On the other hand, the plastic cuticles, which exhibit very low relative

stiffness, low tensile modulus and large breaking strain, usually fail in shear.

The insect population above an area of agricultural land was studied by Freeman [21] from

just above ground-level to nearly 91 m The following conclusions were reported:

1. The population consisted mainly of small weak flying and low weight insects which

drift involuntarily with the wind.

2. The local vegetation determined the general character of the aerial fauna, which

showed significant changes from month to month.

3. The largest numbers and variety of insects were found in May, June, and September,

active times in mating and dispersal.

4. Maximum numbers of most groups of insects occurred at relative humidities below

59%, wind velocities of 19 km/hr, and below and at temperature in excess of 18°C.

Since there were significant changes in types of insects from month to month and one location

to another due to vegetation, any systems developed must be capable of preventing varieties

of insects from sticking.

1.2.2 Insect Reduction Studies

There have been a number of methods attempted to minimize the sticking of insects on

airfoils. Gray and Davies's [22] solution was to cover the front part of the test section with

a sheet of paper stretched tightly around the leading edge. After the aircraft reached an

altitude higher than 152 m, the pilot discarded the paper by pulling a string looped through

the paper.



Wortmann's [23]solutionto overcome the insectcontamination problem was to use an

elasticsurfacesuch as solidrubber or foam rubber. At high velocities,even small objects

such as insectspossessufficientkineticenergy to cause theirbodies to burst open upon

impact, and the viscousbody fluidwilladhere to the surface.An elasticsurfacecan store

the impact energyof an insectfora shortperiodoftime and push the insectaway from the

surface.In such a process,the burstingopen ofthe insectand adhesion ofthe insectdebris

to the surfacemay be prevented. Wortmann alsofound that as thicknessof the rubber

increases, the elasticity gets more effective even at the high velocities investigated.

Severaldifferentmaterialssuch as Teflon R tape,spray-on Teflon R, organic-siliconhydropho-

biccoating,random rain-repellentcoating,and polishedaluminum alloywere tested[5,10].

Although none ofthesematerialswere abletopreventthe adherenceofinsectdebris,insects

remaining on the Teflon R surfacewere easilyremoved with a damp cloth applying only a

lightpressure[10].

Spray systems which are also suitable for anti-icing control, have been investigated for

effectiveness in controlling insect debris build-up [5,10]. A study has been done with a

liquid mixture of water and anti-freeze where the liquid is continuously ejected onto the wing

surface during take-off or landing to prevent insect adhesion [24]. Although this method

has some potential, there are disadvantages due to the requirements of maintenance and

of a continuous liquid supply. Another potentially interesting scheme is the cryogenic frost

system. This system can provide cold air (approximately -15°C) along the leading edge,

and the cold metal would (except in dry atmosphere) cause the formation of frost, in a

short period of time [24]. Thus, the adhesion of insects during take-off and climb can be

prevented by a frost coating, and the airstream would quickly melt the frost and leave a

clean surface for laminar flow. However, ground preparation for following flights require

manual cleaning of the leading edges, since the cryogenic frost system is not effective during

landing.

Shielding the wing surface from insects using a leading edge flap has also been successfully
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tested [5]. Sublimation coatings, mechanical scrapers, and deflectors were also investigated

in the past [24].

Siochi, et al. [25] studied the effects of surface energy and surface roughness on the adhe-

sion of insects debris on the modified airfoils. Four polymer samples (Nyebar R, Teflon R,

polysulfone and polymethylmethacrylate) with different surface energies were investigated

by impacting insects in a road test. Fewer number of insects were found on the lowest

surface energy polymer (Nyebar a) than on the highest energy surface (polysulfone). It

was concluded that the surface energy of the polymer used had an effect on the number of

insects sticking to the surface while the effect of surface roughness was insignificant.



Chapter 2

Scope of the Study

2.1 Objectives of the Study

The objective of the present study was to investigate factors such as elasticity and surface

energy of polymers which might affect the insect fouling of modified airfoil surfaces under

controlled conditions. Insect-sticking mechanisms on different sample surfaces could also

be obtained. Finally, surface analysis such as electron spectroscopy for chemical analysis

(ESCA), scanning electron microscope (SEM), and contact angle measurements using a

goniometer were applied on aluminum and test polymer surfaces to determine their surface

energy, composition, and topography.

2.2 Plan of the Study

The priminary focus of the present study was to simulate the impact of insects on the

sample surface without introduction of a large experimental error. The study was divided

into three phases depending on the method used to collect insects. A modification and



a new techniquewere developed,as any experimentalerrorwas assumed to be associated

with a giveninsectcollectingmethod.

2.2.1 Phase I Study Using the Established Road Test

The effectof surface energy on the number of insects sticking has been extensively studied by

Siochi et al. [25,26]. The results of the study indicated that on average, fewer insects stuck

onto lower energy surfaces. However, the total reduction over the range of surface energies

examined was small as shown in Figure 1. In addition, results from individual polymers

used showed large deviations from the average trend, and errors associated with each point

were often larger than the average reduction of surface energies studied. Such results might

be due to problems associated with road testing. There were probable experimental errors

which might have been introduced during the road test. One source of error might be a

variable insect flux across the sample holder so that the number of insects striking one

sample might be different from that striking an adjacent sample. A larger number of tests

might have been required simply to eliminate such statistical errors. It is also possible

that uncontrollable sizes and types of insects, which may have different effects on different

samples, contribute experimental errors. It was essential that such potential errors be

determined before further research was performed.

The objectivesofthe phase Istudy were to investigatethe feasibilityofthe establishedroad

testand to testdifferentsetofsamples from ones testedby Siochietal. [26].

2.2.2 Phase H Study Using a Modified Road Test

The first objective of this phase of the study was to detect possible experimental errors

described in the phase I study from an investigation of insect distribution across the sample

holder (half-cylinder). The second objective of the study was to develop a new sample

arrangements so that further use of the road test was possible. The last objective was to
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study the elasticityeffectofpolymer-coatedmetal surfaces(modifiedaircraftwing surfaces)

on the insectadhesion usingthe modifiedroad testwith the new sample arrangement.

Although a modified road test could reduce some errors due to a variable insect flux, a large

number of runs per sample might still be required. Other serious problems with any road

test are limitations imposed by weather conditions (no experiments were possible during

cold or rainy days), and errors due to uncontrollable sizes and types of insects.

2.2.3 Phase HI Study Using an Air-Gun

A new insect impacting technique, which could overcome problems associated with the

road tests described in the previous paragraphs, was needed. An air-gun, which was able

to accelerate insects up to 65 mph (speed of car during the road tests) or higher was

assembled to perform experiments without limitations of weather, and under controlled

conditions. Another advantage of the air-gun was the use of a single type of insect having

a constant size. Different types of polymer samples could be investigated using the air-gun

and a single type of insect could be used to study the effects of elasticity and surface energy

on the insect adhesion.



Chapter 3

Experimental

3.1 Insect Impact Studies

The preliminary focus of the present study was the development of a technique to study the

impact of insects on the sample surface without introducing a large experimental error. As

described in Chapter 2, the study was divided into three phases depending on the method

used to collect insects.

3.1.1 Materials Tested in this Study

Polymer samples tested in this study are described below.

Fluorocabon Elastomer (FCE) --Five different types of fluorocarbon elastomers

(FCE's) received from 3M were tested in phase I and II studies using the road tests. FCE

samples are 2.15 mm thick and have different fluorine contenet with different mechanical

properties. Two of FCE samples, designated as A & B contain 69% fluorine and ones des-

ignated as C, D & E contain 66 % fluorine. Their moduli of elasticity at 200 % elongation

vary from 972 to 2,900 kPa.

11
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Neoprene and Viton R --Neoprene and Viton R samples both 2.00 mm were obtained

from duPont and used in both phase Iand IIstudies.

Polyurethane --Polyurethanefilmswere pressedfrom estanes(Goodrich)with 31% hard

segments in 152.4x152.4mm molds with thicknessof0.79 mm and 1.59mm at 150°C and

190°C, respectively.Because they were pressedattwo differenttemperatures,theirrnoduli

of elasticityare different.

Styrene Butadiene Rubber (SBR) --Four 2.00 mm thickstyrenebutadiene rubber

(SBR) samples obtainedfrom U. S.Army -FortBelvoirwere testedduringthe phase I[road

teststudy.Their moduli ofelasticityat 200% elongationvary from 4,780 to 5,060 kPa.

TeflonR Samples --TeflonR fluorinatedethylenepropylene copolymer (FEP) and te-

trafluoroethlenecopolymer (TEFZEL) both with thicknessesof 0.01 ram, and 0.02 mm

thickTR-Tedlar R poly vinylfluoride(PVF) were obtainedfrom duPont. Pumbling quality

Teflon R tape with a thicknessof 0.06 ram, and 0.12 mm thickTeflon R filmswere tested

mainly during the phase IIIstudy using the air-gun.

Others --Hostaphan R polyesterand polyethylenefilmswith thicknessesof 0.02 mm,

and 0.03 mm thick polypropylene were obtained from Rexham. These three samples

and 0.02 mm thickpolycarbonate and 0.01 mm thickchlorotetrafluoroethylenefilmsand

NyebarR barrierfilmcoatingwere investigatedduringthe phase Illstudy usingthe air-gun.

3.1.2 Phase I Study

The objectiveofthe phase Istudy was to investigatethe reliabilityof the establishedroad

test[26]to obtainreproducibleresults.
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3.1.2.1 Samples Tested and Their Preparation

The samples testedin the phase I study were fiveFCE's, neoprene, VitonR, and poly-

urethaneswith two differentthicknesses,which have differentmoduli of elasticity.There

was the definitepossibilityofcontaminationon the elastomersurfacesdue to greaseduring

pressingand handling.All the elastomerswere washed in a commercial detergent(TideR)

in water, and subsequentlyrinsedwith deionizedwater at least10 times. The washed

elastomerswere driedover-nightin a vacuum oven at room temperature.

Five 19x 152 mm stripsof each elastomerwere washed and dried as describedabove, and

adhesivelybonded to 25×203 mm aluminum strips.To remove any greasefrom the contact

surfaces,the aluminum surfaceswere wiped with Kemkit R wetted with acetone and the

contactsurfacesofelastomerswere washed with pure ethanol.

Adhesives from the Lord Chemical Corporation were used to glue the elastomer strips to

the aluminum substrate. Viton R, polyurethane and FCE strips were glued to the aluminum

strips using Chemlock (cyanoacrylate adhesive), and pressed between two aluminum strips

for at least 30 seconds while the adhesive cured. Neoprene strips were glued using Chemlock

234B (mixture of xylene, trichlorethylene, and carbon black), and pressed between two

aluminum strips. The ends were clamped and placed in an oven at 82.2°C for two hours.

All washed elastomers were stored in the dessicator over a drying agent Drierite R.

3.1.2.2 Insect Impact -Road Test

Insects impact studies were done using the road test previously designed by [26]. The

sample strips prepared as described above and five aluminum (control) strips were randomly

mounted on either an aluminum or a PVC half cylinder (102 cm long and 10 cm or 13 cm

outer diameter) as shown in Figure 2. These cylinders were then mounted as shown on

the top of a car and driven at average speed of 89 km/hr) around a loop on Route 618 in
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car roof

samples

car roof rack

Figure 2: Simplified diagram of an insect collecting device: Sample
and control strips were randomly mounted on a half-cylinder which
was then mounted on a top of the car. Insects were collected on
the sample and aluminum surfaces by driving at average speed of
89 km/hr.
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GloucesterCounty, Virginiabetween 19:05and 20:20 hrs on September 7, 1986 to impact

insectson the polymer and aluminum surfaces.The insectscollectedon allthe samples and

aluminum were counted visuallyand summed.

3.1.3 Phase 1I Study

A largeexperimentalerrorwas assumed to be introducedduring the road testsperformed

in phase I study caused by a variableinsectflux. Variationin the insectfluxmight be

due to a random distributionof insectson the road, the effectsof wind, and possibly

other road traffic.To detectthe presenceof such errors,the insectdistributionacrossa

half-cylindermounted on the top of a car using only aluminum stripswas studied. The

relationshipsbetween the number of insectsstickingon the sample surfacesand properties

ofthe polymer samples such as modulus of elasticityand surfaceenergy were investigated

using a new arrangement ofsamples and control.

3.1.3.1 Insect Flux Across the Half-Cylinder

To determine the presenceofexperimentalerrordue to a variableinsectfluxas described

above,road testsconducted carriedon threedifferentdays duringthe summer seasondriv-

ing from Blacksburg,Virginiato Princeton,West Virginiaand back, a totaldistanceof

approximately 161km at averagespeed of89 kin/hr.Twenty 25x 229 mm aluminum strips

were mounted on a 102 mm OD (outsidediameter)halfcylinderwhich was then mounted

on the top of a car.The number ofinsectsstickingon each stripwere counted visuallyand

recorded.By comparing the number of insectstickingon each aluminum strip,the insect

densitydistributionacrossthe half-cylinderwas obtained.
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3.1.3.2 Samples Tested and Their Preparation

The five FCE samples tested in the phase I study and four SBR samples were tested to

study the relationship between the modulus of elasticity and the number of insect sticking

to the elastomer. Since all four SBR samples or five FCE samples are expected to posses a

similar surface energy, this factor is eliminated in comparing between the number of insect

sticking on the elastomers. Thirteen 19)< 152 mm strips of each FCE were washed, dried and

adhesively bonded with cyanoacrylate to 25)<229 mm aluminum strips as described in the

phase I study. Six 19)<152 mm strips of each SBR were adhesively bonded to 19)<229 mm

aluminum strips with cyanoacrylate. Both surfaces were washed by wiping with Kemkit R

wetted with acetone before the adhesive was applied. The test surfaces of SBR strips were

washed by gentle wiping with Kemkit R wetted with acetone as suggested by personnel at

the Fort Belvoir research laboratory.

Plumbing-quality Teflon pipe thread tape (Teflon R tape) was also investigated. Twenty

19)<152 mm strips of Teflon R tape were attached on 25×229 mm aluminum strips using

spongy 3M Scotch double-sided mounting tape (approximately 1.23 mm thick). Another

twenty strips of Teflon tape were glued on aluminum strips with non-spongy 3M double-stick

tape (approximately 0.01 mm thick).

3.1.3.3 Insect Impact -Modified Road Test

It was determined that the insect distribution across the half-cylinder used during the road

tests was nonuniform as explained in detail in the following chapter. The sample and

aluminum strips used in the phase I study were mounted in a random manner for each road

test. However, this method could lead to serious experimental error since some strips of any

one type of sample might be mounted in a position where the insect flux may be low or high.

This leads to variations in the number of insects on different strips of a given sample, and

to inaccuracies in calculating statistical averages based on five strips of one sample. The
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chanceofmounting a sample at a highor low insectfluxpositioncan be reduced by running

a road testwith only one type ofsample with an equal number of aluminum controls.

The sample and controlstripswere mounted on the aluminum half-cylinderas shown in

Figure3,and the road testswere performed at the times and dates listedin Table Idriving

from Blacksburg,Virginiato Glen Lyn, Virginiaand back,a totaldistanceofapproximately

161 km at average speed of 89 kin/hr. The number of insectson each stripwas counted

visuallyand summed. Insteadof comparing the absolutenumbers of insectson different

samples,normalizedpercentages(NP) which compare the number ofinsectsstickingonto a

givensample with thatstickingonto aluminum were calculatedby the followingequation:

totalnumber of insectson sample strips

NP = totalnumber of insectson aluminum strips× 100 (3.1)

This allowedrunning one type ofsample per run with aluminum controlstrips,and gave an

indicationofthe effectivenessofthatsample type in reducingthe number ofinsectsticking

to the surface.A NP value of 20_ means that thereisan 80_ fewer :nsectsstickingon a

given sample than onto aluminum.

3.1.4 Phase HI Study

Severalpossibleerrorsintroducedduringroad testsand problems associatedwith the insect-

impacting simulationusingroad testswere describedinChapter 2. A new insectimpacting

techniqueusingan air-gunwas developedand testedto overcome such problems. The air-

gun couldaccelerateinsectsup to 105 km/hr or higherand experimentscould be performed

without limitationsofweather and under controlledconditions.The effectsofelasticityand

surfaceenergy on the insectadhesionwere extensivelystudiedusing the air-gun.

3.1.4.1 Review of Fluid Flow in a Circular Pipe

Ifthe shear forceper unit area of any fluidis proportionalto the negativeof the local

velocitygradient,then the fluidisdefinedas a Newtonian fluid.All gasesand most simple
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aluminumstrip
samplestrip

Figure 3: A new arrangement of sample and aluminum strips across
the half-cylinder: To reduce the chance of mounting a sample at
a high or low insect flux position, a road test was performed with
only one type of sample with an equal number of aluminum strips.
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Table I: Dates and Times of the Phase II Road Tests.

Sample Date (1987) Time

FCE-A

FCE-B

FCE-C

FCE-D

FCE-E

SBR-3C

SBR-7C

SBR-26

SBR-17B

August 6

August 9

August l0

August 11

September 2

September 3

September 3

September 8

September 8

19:45- 21:30

20:00- 21:45

20:10- 21:45

19:30- 21:32

19:17- 20:48

19:37-21:15

19:37-21:15

19:33-21:00

19:33- 21:00
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liquidsare Newtonian fluids[27].The axialvelocityprofileof the flowthrough a circular

tube can be obtained by the equation ofmotion in cylindricalcoordinatesfora Newtonian

fluidfrom a momentum balanceand Newton's law ofviscosity.For thisderivation,constant

densityand viscosityofthe fluidthatare independenton the radialpositioninthe tube are

assumed. The circulartube must be long enough so that end effectscan be ignored;and

a steadystateairflowmust be achievedso thatthe velocityvz isonly a functionof radial

positionin the tube.

The dimensionless Reynolds Number (Re) for flow in a circular tube is defined as[28]:

Re- D< vz > p (3.2)

where

D -- tube diameter

< vz > = average axial velocity

p = fuid density

= fluid viscosity

The flow in a very smooth circular tube is laminar when the value of Re is less than 2,100 and

turbulent when Re is greater than 2,100 [27]. The velocity of the turbulent flow fluctuates

over a period of time about a mean value, so that the time-smoothed velocity by taking an

average of velocity over a time interval is considered. In the immediate region of the tube

wall, the velocity fluctuations in the axial direction are greater than in the radial direction.

Newton's law of viscosity is used to describe the fluid flow as a function of radius. As the

distance from the tube wall increases (approaching the center of the tube), the velocity

fluctuations are very random and turbulent flow is fully developed[271.

For both types of flow (laminar and turbulent) the velocity distributions over a tube cross

sectiondevelop as shown in Figure4. Thus, the axialvelocity(v,)isa functionof radius
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(r),and the averageaxialvelocityisobtainedby:

f_o"for vz(r) drdO (3.3)
< >= yo2.foRrdrdO

where R is the radius of the tube and v:(r) is the axial velocity which is a function of r.

As shown in Figure 4, the velocity distribution over a tube cross section for turbulent flow

is more uniform than for laminar flow.

3.1.4.2 Preliminary Study of the New Insect-Impact Technique

Insect Impact Technique To determine the feasibility of using a controlled insect im-

pacting method, an air-gun was designed and tested. The air-gun consisted of a 25 mm PVC

pipe, a T-connector, and a nozzle arranged as shown in the simplified diagram in Figure 5.

Compressed air was passed through the nozzle, and the high velocity air exiting from the

nozzle created a suction behind the nozzle that induced a large inflow of air through the

feed chute. This large volume of air was accelerated as it flowed past the nozzle creating a

high velocity flow of air in the down stream section of the pipe. Any small object, such as

an insect, that was placed in the feed chute would be sucked into the pipe, accelerated in

the pipe, and ejected from the end of the pipe at high velocity. The position of the nozzle

along the pipe axis is very critical, since it will determine the amount of air sucked into the

pipe. The optimum position of the nozzle, which gave the miximum air velocity inside of

the pipe, was determined by measuring air velocity at the exit end of the pipe while varying

the nozzle locations.

Determination of the Velocity The exact velocity of an object exiting from the end

of pipe was determined using a camera, a light spherical particle, and a strobe lamp. In a

completely dark environment, the light reflected from a small white object located approxi-

mately 152 cm from a camera and illuminated by the strobe lamp operated at 400 Hz could
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Figure 5: Simplified diagram of air-gun: Compressed air, passed through
a nozzle created a suction behind the nozzle that induced a large
inflow of air through the feed chute. An insect, placed in the feed
chute is sucked into the pipe and accelerated so it exits from the end

of the pipe at a high velocity.
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be recorded on 3200 ASA film. Spherical polyethylene particles (approximately 10 mm di-

ameter) - were coated with chrome to achieve maximum reflection of light. The experiment

was carried out in darkness with illumination of the particles provided by a strobe lamp. A

35 mm camera was focused on the plane of the path of the particles exiting from the end of

the pipe. A sheet of black velvet was placed approximately 183 cm from the camera, and

behind the path of the particles to create a dark background. The position of the strobe

lamp required adjustment until the brightest image of the particle appeared in the camera

viewfinder without light reflected from other surfaces interfering with the image. The final

set-up of the apparatus is shown in Figure 6.

First a ruler placed along the path of particles exiting the pipe was photographed using

a constant (un-strobed) light source. Then keeping the position of the camera fixed, pho-

tographs of exiting particles were obtained with strobed lighting on successive frames of film.

When a particle was dropped into the feed chute, the shutter of the camera was opened,

and as a particle exited the end of the pipe it formed images on the film as it crossed the

path of the strobed light. Since the light from the strobe was fired at a fixed frequency,

the particle appeared as a sequence of equidistant bright dots as shown in Figure 7. The

actual distance between two dots was calculated by measuring the distance between two

successive dots appearing in a photograph and scaling up by the ratio between the actual

distance indicated by the ruler and the distance measured in the photographs of the ruler.

From the distance between successive dots and the frequency of the light from the strobe

lamp, the velocity of the particle, vp was calculated by:

vp = distancebetween successivedots× strobefrequency (3.4)

The average particle velocities from thirteen measurements using a compressed air supply

of 35 kPa and from four measurements at 70 kPa were calculated to be 82 km/hr and

105 km//hr, respectively. Higher velocities could be obtained by increasing the pressure of

the compressed air supply, with an available maximum of 517 kPa.
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Figure 6: Photographic technique used to determine the velocity of a

particle exiting from the air-gun: The particle exiting from the

end of the pipe appeared as a sequences of equidistant dots, when the

particle was illuminated by a strobe lamp in the dark environment.

The path of the particle was photographed using a 35 mm camera.
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Figure 7: Photographs of a ruler and a particle trace at 35 kPa: The

path of the particle exiting from the end of the pipe was illuminated

by the strobe lamp as a sequence of dots. The velocity of the particle

was calculated from the strobe frequency and the distance between
successive dots.
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3.1.4.3 Development of the Air-Gun

Since the velocity of the particle exiting from the end of the air-gun was determined to

be reasonably high, using the air-gun as a controlled insect-impact device approved to be

feasible. Further development of the air-gun was done to obtain more uniform velocity

distributions over the entire sample target. A larger PVC pipe (length: 368.5 cm; diame-

ter: 7.6 cm) was used. Increasing the diameter and the air velocity should increase the degree

of turbulent flow creating a more uniform velocity distribution across the cross-section of

the pipe. This caused insects within the pipe to impact the target with approximately the

same velocity regardless of their radial position. The length of the pipe was increased so

that the entrance effects would be negligible toward the exit end, and the air flow inside

of the pipe would reach steady state. As shown in Figure 8, a 10.2 cmx20.3 cmx152.4 cm

rectangular plexiglas duct was placed at the end of the circular PVC pipe, to prevent the

air flow from the end of the circular I'VC pipe from diverging into the environment. An

additional amount of air was sucked into the gap between the circular and the rectangu-

lax pipes, and further improvement of the velocity distribution was achieved. The sample

target - an aluminum strip which the polymer sample strips were glued onto was bolted

on the sample holder as shown in Figure 9. This sample holder was placed at the center

of the cross section of the rectangular duct along its axis and toward the exit where fully

developed turbulent flow was present.

3.1.4.4 Determination of Air Profile and Velocity

A small quantity of finely powdered dry ice was poured into the feed chute and blown across

the length of the air-gun to study the air flow profile inside the plexiglas duct. Since the

density of dry ice is low and the particle size is small, the path of dry ice passing through

the rectangular duct would be the same as that of the air flow. After the air flow was fully

developed, a small quantity of dry ice was introduced into the feed chute and its path was

observed.
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Figure 9: Sample holder used in the air-gun: Sample strips were mounted
onto the aluminum strip which then was bolted onto the sample
holder.
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As shown in Figure 10, no flow was seen close to the walls of the duct even at the exit.

The expansion of air from the 7.63 cm PVC pipe into the rectangular duct would induce

an additional flow of air into the duct as illustrated in Figure 8. The study of the stream

lines showed that the eddies created by this air flow entering the high velocity stream from

the PVC pipe were quickly dampened and had no effect towards the exit end of the duct.

When a "pulse" of dry ice was introduced into the air-gun, a sharp vertical front could be

observed using strobed lighting which passed through the duct indicating a well-developed

turbulent flow, with a uniform air distribution extending to 15.2 cm along the height of

the duct and practically all 10.2 cm along the width. A fairly uniform density of dry

ice was formed on the leading edge of the sample holder further emphasizing the uniform

distribution of material carried by the air flow in the air-gun. Therefore if a sample of less

than 15.2 cm height was mounted closed to the exit of the duct and along its axis, the

velocity of insects carried by the high velocity stream and impacting the sample would be

uniform along the width of the sample.

Using a compressed air supply of 172 kPa in the improved air-gun, an approximate particle

velocity of 113 km/hr was visually determined as described in the preliminary study using

a polyethylene particle. At 483 kPa, the air velocity within the horizontal cross section of

the rectangular duct was determined to be 177 km/hr using a pitot tube. As expected,

there was a drop in velocity along the vertical axis of the duct, and almost zero velocity was

recorded near the top and bottom of the duct using a pitot tube. After the sample holder

was mounted, a small drop in the air velocity directly in front of the sample holder was

observed using a pitot tube, when the air valve was fully open (approximately 517 kPa).

However, since an insect fed into the feed chute accelerates and reaches the steady state

velocity inside the pipe, it was valid to assume that most of its kinetic energy or velocity of

the insect was conserved on impact with the target regardless of the drop in the air velocity.
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Figure 10: An profile of the path of dry ice: The path of dry ice in the
plexiglas duct showed that the eddies created by an additional flow
of air into the duct had no effect on the air flow exiting from the end
of the circular pipe. No flow was seen close to walls of the duct.
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3.1.4.5 Insect Impact Using the Air-Gun and Drosophila

FCE-A,B, C and D samples which were prepared as in the phase I and II studies, were tested

to compare with the results from the road tests. Other polymer films tested were Teflon R

fluorinated ethylene propylene copolymer (FEP), TEFZEL R tetrafluoroethylene copolymer,

polypropylene, polyethylene, Hostaphan R polyester, TR-Tedlar R PVF, plumbing-quality

Teflon R pipe thread tape (Teflon tape), nylon, chlorotetrafluroroethylene (CTFE), poly-

carbonate, and TeflonRsheet as well as Nyebar R coating. Thicknesses of these samples are

fairly small so that the effect of elasticity of the films on insect adhesion was assumed to be

negligible. The surface of Teflon R sheet was wiped with Kemkit R wetted with acetone to

remove grease from the surface. However, since the preliminary water contact angle mea-

surements on other polymer film surfaces showed only a small variation of contact angles,

clean surfaces of the polymer films were assumed and the films were used as received.

Two strips of each polymer film (approximately 1.3x15.2 cm) were glued on a 8.9x35.6

cm aluminum strip, and this aluminum strip was bolted onto the sample holder as shown

in Figure 9. This arrangement was similar to the one used in the phase II study, in that

the exposed regions of aluminum next to each sample strip were used as control and the

normalized percentage (NP) defined in Equation 3.1 was calculated for each sample tested.

A minimum of 4 tests (total of 8 strips) per sample were performed.

The polymer film strips were glued onto the aluminum in two different ways -using non-

spongy 3M Scotch double-stick tape and spongy 3M Scotch double-sided mounting tape.

The samples prepared using non-spongy tape were thin enough that the effect due to the

elasticity was assumed to be small, and insect adhesion on the polymer was dominated

largely by its surface energy. On the other hand, the spongy tape provides additional

elasticity for a given polymer film, so that any difference in the number of insects sticking

on the film prepared by these two different ways would be due to the extra elasticity. PVF

strips were also glued onto neoprene and Viton R substrates to obtain intermediate values

of elasticity for the tests.
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The sample holder carrying sample strips described above was placed in the center of

the plexiglas duct as shown in Figure 8, and the air valve fully opened. A large number

-approximately 250 or more of Drosophila (fruit flies) were introduced into the air-gun

through the feed chute, accelerated to a high velocity and impacted onto the target surface.

The number of insects on sample strip and control surfaces for a given polymer film were

counted using an optical microscope, and the NP value was calculated.

3.2 Relevant Sample Properties

3.2.1 Surface Analysis

Surface analyses using contact angle measurements, ESCA and SEM were done to charac-

terize the sample elastomers tested in the study, so that the effects of surface properties

on insect adhesion could be obtained. Surface analyses were also used to detect visual and

quantitative changes of some sample surface due to washing.

3.2.1.1 Contact Angle and Solid Surface Tension Measurements

Contact Angle and Critical Surface Tension When a drop of liquid is placed on a

solid, it will either wet the solid or remain as a drop. The liquid drop may have a definite

angle between the liquid and solid phase as shown in Figure 11. The angle (0) is the

contact angle and is defined as the angle bewtween a line drawn tangent to the liquid at

the liquid/solid contact point and the solid surface. It is important to notice that a non-

uniform surface due to surface roughness or surface contamination can change the contact

angle. Therefore, much smoother surfaces are required to measure smaller contact angles

than larger ones [29].

The contact angle has been used to characterize solid surfaces by many researchers. Zis-

man [29] has introduced the concept of critical surface energy, % as an empirical method
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Figure 11: Contact angle of a sessile drop: The contact angle (0) is the
angle between a line drawn tangent to the liquid/solid contact point
and the solid surface. _/,_ is the solid/liquid interfacial surface en-

ergy, qf_0 is the liquid/vapor interfacial surface energy, and _/m0 is
the solid/vapor interfacial energy which is usually equal to the solid
surface energy (qf,)[29].
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of determining the wettabilityof solidsurface.A plotof cos0 versusliquidsurfaceen-

ergy (_ze)for variousliquidson a given solidsurfaceisextrapolatedto cos0 = 1, and

the correspondingvalueofliquidsurfaceenergyisdefinedas the criticalsurfaceenergy of

solid,% [29,30].The criticalsurfaceenergy,_c isthe surfaceenergyof the liquidthatjust

wets the solid,so any liquidswith -_l#lower than "Ycwillspread on the solidsurface.The

wettabilityof organicsurfacesiscommonly determined by the nature and packing of the

surfaceatoms or exposed groups of atoms of the solid,but independent ofthe nature and

arrangements of the underlyingatoms and molecules[30].

When cos0 isplottedas a functionof _# fora varietyof non-homologous liquids,the points

liecloseto a straightlineor collectedaround a narrow rectilinearband [29,30].Certain low

surface-energysolidsshow curvatureforvaluesof _/z0above 50 dynes/cm, and thisisdue

to formationofweak hydrogen bonds between the moleculesof liquidand moleculesin the

solidsurface.When rectilinearbands are obtained forcos0 versus"Ylgplots,the intercept

ofthe lower limb of the band at cos0 = 1 ischosen to be the % [29,30].

Studiesshow that differentvaluesof "_c fora particularsolidsurfaceare obtained depend-

ing on the liquidseriesused in determination.Therefore the liquidseriesused must be

picked with care. Generally,a seriesof pure liquidsare used to determine _c, and one

seriesknown as the Zisman seriesare water,glycerol,formamide, methylene iodideand 1-

bromonaphthalene. However, a varietyofanionic,cation,and nonionicsurfaceactiveagents

and simpleorganiccompounds in aqueous solution[31],mixtures ofacetoneor ethanoland

water [32] are also used to determine _c.

Severalsemiempiricalequationshave been proposed to determine the solidsurfaceenergy

(_/°)and interracialenergy (%1). One ofthem isOwens-Wendt equationthatgivesthe polar

and dispersioncomponents of the solidsurfaceenergy,and they can be combined to give

solidsurfaceenergy(%) with reasonableaccuracy [33].The combined Owens-Wendt-Young
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equation [34] is given as

1/2

= + (3.5)

The subscript l refers to the test liquid and s refers to the solid, and 0 is the contact

angle for the given liquid on the solid. The superscripts d and p are dispersion and polar

components of the surface energy, respectively, and the summation of these values of these

two components gives the solid surface energy. When three or more different liquids are

tested, the polar and dispersion components of the solid surface energy can be obtained from

the slope and intercept of a plot of "_ (1 + cos0)/2('_) 1/2 versus ('_/,_:)1/2, respectively.

Wetting and Surface Tension Wetting is defined as the displacement from a surface

of one fluid by another, and there are three recognized types, namely, spreading, adhesional

and immersional wetting [35]. Usually wetting means that the contact angle between a

liquid and a solid surface is zero or close to zero such that the liquid easily spreads over

the liquid. On the other hand, non-wetting means that the contact angle is greater than

90 ° so the liquid tends to ball up and run off the surface easily [36]. Since only two types

of wetting (spreading and adhesional) are relevant to the present study, these are discussed

below.

In spreading wetting, a liquid which is already in contact with the solid surface spreads,

so that the solid/liquid and liquid/gas interfacial areas are increased but the solid/gas

interracial area is decreased. The spreading coefficient (S) is defined [36] as

s = -AC,IA = - + (3,6)

where -AG, isthe freeenergy due to spreading,_/,gisthe surfaceenergy of the solidin

equilibriumwith the liquidvapor, _/10isthe liquidsurfaceenergy,_z isthe solid/liquid

interracialenergy and A iswetting area. _,g isusuallyequal to _ which isthe surface

energy of the solidagainstitsown vapor. IfS ispositiveor zero,the liquidwillspread

spontaneouslyover the solidsurface.IfS isnegative,the liquidwillremain as a drop with
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a finite contact angle on the solid surface [35]. Spreading of a particular liquid on a given

solid mainly depends of the surface energy of the solid.

The equilibrium contact angle (0) is determined by a minimum in the total surface free

energy, that is the quantity (-%g A°_ + _,l Asl + _/10A_) is a minimum, where A is interracial

area. The change in the free energy of the system by spreading to cover an extra area as

shown in Figure 12 is given by

dG = %idA + 7todA + %gdA

At equilibrium, dG = 0 so

or

%s + 7tg cos8 - 7,g = 0

(3.7)

(3.s)

Adhesional wetting occurs when a liquid which is not originally in contact with the solid

surface contacts and adheres to the solid surface. In adhesional wetting, the liquid/gas

interracial area is decreased. The work of adhesion (Wa) is defined [35] as

or

Wa = -A Ga/A = 7,# + 7zo + 7,1 (3.10)

Wa = _/zg(I+ cos0) (3.11)

If the contact angle is zero, the solid is completely wetted by the liquid, and only partially

wetted if the contact angle is finite.

The wetting of a surface during the impact of insects may be explained by either type of

wetting described above. However, with both types of wetting, the contact angle between

the liquid and solid surface depends in part on the surface energy of the solid. Increase of

the contact angle means that the solid surface becomes more wettable by liquid and the

contact area (solid/liquid interfacial area) is increased.

For a given liquid, if the system is at equilibrium, the contact angle is a function only of

(75g - 7$t), the surface energy of the solid and the interfacial surface energy.

cos0= - (3.9)
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Figure 12: Illustration of spreading-wetting at equilibrium: In spread-
ing wetting a liquid surface which is already in contact with the
solid surface spreads. 0 is the contact angle, and A is the interfacial
area [35].
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Contact Angle and Solid Surface Tension Measurements The contact angles of

all the samples tested were measured with (deionized) water using an NRL contact angle

goniometer. In case of the FCE and polyurethane samples, the water contact angles of

washed and unwashed samples were measured to detect any changes in the surfaces due

to the washing process. Since no information on the roughness or homogeneity of any

sample surface were given, a large number of measurements was necessary to reduce errors.

Two micro liters (pl) of water were placed on the sample surface and contact angles were

measured at both sides. An additional 2 pl was added to the original drop and the advancing

contact angles were measured. This procedure was repeated two more times so that the

total volume of water on the sample surface was 8 pl. Contact angles of each sample

were measured at a minimum of three different locations, and the average contact angle

calculated.

The critical surface energies for wa:hed FCE's, neoprene, Viton R and polyurethane were

determined using a series of contact angle measurements as described in the previous para-

graph with water-to-ethanol solutions. Pure ethanol and deionized water were mixed at six

different water to ethanol volume ratios: 100/0, 90/10, 70/30, 50/50, 60/40, 70/30, and

80/20. Also contact angles for all the polymer films tested were measured using pure water,

glycerol and formamide. The critical surface energy ('_c) was obtained from the plot of cos 0

versus liquid surface energy of water/ethanol solutions. Also a line of _/_(1 ÷ cos 0)/2(^/f) 1/2

versus ('_l/_/f) 1/2 was constructed for both water/ethanol series and water, glycerol and for-

mamide series, and the polar and dispersion solid surface energies of a sample polymer were

obtained from the slope and intercept, respectively according to the Owens-Wendt-Young

equation given in Equation 3.5. Liquid surface energies and their dispersion and polar

components of water/ethanol solutions, pure water, glycerol and foramide axe provided in

Table II. The water contact angles on the SBR elastomer surfaces were also measured.
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3.2.1.2 Scanning Electron Microscopy (SEM)

The SEM image isproduced by low energy secondary electronsemitted from the sample

as a resultof excitationby an incidentelectronbeam [37].The beam isscanned over any

selectedareaofthe sample inarectangularpattern;theemittedelectronsarecollectedby an

electrondetectorand transformedintoan image. SEM images have a wide range ofcontrast

so that detailcan be seen both in very dark and in brightareas.Images can alsohave a

greatdepth offocus;they are verysharp at both low and high pointsofthe surfaceso even

quite rough surfaces show startling clarity and a feeling of depth [36]. SEM is widely used

to examine surface topography [36], and resolution down to a few nanometers is possible,

depending on the nature of the sample and the type of microscope. SEM photomicrographs

can be obtained for most dry solids and bulk material, including inorganic samples, metal,

polymeric materials, and biological samples.

SEM was used to study the surfacetopography of some samples used in thisstudy to

observevisuallychanges in the surfacedue to the washing process. A disk was punched

from each washed and unwashed polyurethane,FCE's, VitonR, and neoprene samples,

and sputtercoated with gold using an SPI sputtercoaterfor45 seconds at 35 mA. SEM

photomicrographs of both washed and unwashed samples were taken using a JEOL 35C

SEM at two differentmagnifications(x200 and x360) to detectany changes in surface

topography.

SEM photomicrographs of Teflon R tape before impact of insects were taken to study the

surface topography because of its unusual texuture. The sample disk of Teflon R tape as

received without washing the surface was sputter coated with gold using an Edwards S150B

sputter coater for 2 minutes at 45 mA. SEM photomicrographs of samples were taken using

an ISI SX-40 scanning electron microscope at various magnifications.
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Table II: Dispersion and Polar Components of Liquid Surface Ten-
sions: These surface tensions and their dispersion and polar com-

ponents [32] were used to calculate critical surface tensions and solid
surface energies for the polymers.

Liquid

Glycerol

Formamide

Water/Ethanol

I00/0

90/10

70/30

50/50

40/60

70/30

80/20

(dynec/cm)

37.0

39.5

22.0

19.9

17.3

19.2

18.9

19.4

18.6

(dynes/cm)

26.4

18.4

50.2

31.3

(dynes/cm)

63.4

58.2

72.2

51.2

17.6 34.9

12.3 31.5

10.4 29.3

9.7 29.1

8.3 26.9
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3.2.1.3 Electron Spectroscopy for Chemical Analysis (ESCA)

X-ray photoelectronspectroscopy(XPS) or electronspectroscopyfor chemical analysis

(ESCA) was originatedby ProfessorSiegbahn at Uppsala Universityin Sweden [37].In

ESCA a sample isirradiatedwith an incidentbeam of x-raysin a ultra-highvacuum [38].

When the x-rayenergy (hu) exceedsthe bindingenergy of the electron(Eb),absorptionof

x-rayphotons by atoms inthe sample causeselectronstobe ejected.Photoemitted electrons

leavethe sample with kinecticenergy EL, thatismeasured by the ESCA spectrometer[37].

This processcan be describedby the followingenergy conservationequation[39]:

hu=Ek+E +¢, (3.12)

Since the Eb is a characteristicof the atomic orbitaland ¢ is a charging correction,an

element presenton the sample surfacecan be identifiedfrom the ESCA spectra.

Small changes in binding energies of atomic orbitals give rise to what is called the "chemical

shift effect" in ESCA [38]. For example, changes which generate a lower electron density at

the nucleus of an atom tend to increase slightly the binding energies of the atomic orbitals.

Thus, these chemical shifts can reveal the oxidation state of an element or its presence in a

particular functional group or chemical environment such as nitrogen in amines, ammonium

ions, nitrites or nitrates [40].

ESCA isa surface-analysistechniquefor a wide range of samples, includingorganic and

inorganicmaterials,such thatoxidationstate,organicstructureand bonding information

can be obtained. Although ESCA can detectallelements except hydrogen, itsvacuum

requirementsforanalysislimitsamples to solidmaterials.Quantitativeanalysisisfeasible

forfilmsand other smooth surfaces,but isdifficultforpowders [37].

Some of its applications are listed as follow:

• Determination of the surface composition of multicomponent polymer films [41].
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• Determination of oxidation state changes at the surface of a sample [39,42]

• Investigation of surface contamination problems for both organic and inorganic ma-

terials [41,43].

• Surface adsorption studies for the case which adsorbed species is bonded strongly

enough to resist the vacuum necessary for analysis [37].

• Studies of catalysts, including oxidation state determinations and surface enrichment

effect, leading to structure-activity correlations and identification of changes upon

aging [37,39].

Unwashed and washed polyurethane, FCF_,-A, B, and C samples were analyzed quantita-

tively using ESCA. ESCA spectra are obtained at a 90 °take-off angle using a Kratos

XSAM 800 spectrometer with a Mg-Ka x-ray source. Comparison of these ESCA results

lead to a clearer understanding of the observed changes in the contact angles due to w_shing

these samples. All other samples used in this study were similarly analyzed quantitatively

using ESCA to detect the elements present on their surfaces.

3.2.2 Modulus of Elasticity

A material is called elastic when the deformation produced in the body is completely re-

covered after the applied force is removed. The modulus of elasticity in tension, or Young's

modulus (E) is [451

E-'-a/r (3.13)

where a isthe tensilestresswhich isthe normal forceactingper unit area ofa plane,and

r isthe tensilestrainor deformationwhich isthe elongationper unitlength[45].A better

elastomerwillhave a higherdeformationor a smallermodulus.

Dog-bone specimens were cut from the elastomer samples, and neck lengths and thickness

were measured. The dog-bones were stretched in an Instron tensile test at a cross-head
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speed of 10.0 mm/min untila plotof load (kg)versuselongation(rnm) was achieved.A

modulus of elasticity(E) fora given sample was calculatedfrom a plotobtained on the

Instronusing the equation:

E = slope of the plot x g x
area × C

length of neck
(3.14)

The elongationobtained from the slopeof the plotiscorrectedto the actualelongation

usinga correctionfactor- crossedspeed dividedby chartspeed. The areain Equation 3.14

iscalculatedas the product of thicknessand width of the neck of the dog-bone; g isthe

accelerationof gravity,C isa conversionfactor(1kg m/s2/N, or 32.174Ib,nft/s_/Ibl).



Chapter 4

Results and Discussion

4.1 Surface Analysis Results

SEM, ESCA and contactanglemeasurements usinga goniometer have proved to be useful

techniquesindetectingchanges on the polymer surfacesdue to washing, determinationon

surfaceenergy,and measurements of surfacecompositionsforallpolymers studied.

4.1.1 Detecting Changes on Surfaces Using Surface Analysis

The presence of contaminants on the elastomers used in the phase I study was examined

by analyzing surfaces of both washed and unwashed samples. Samples were washed using

a commercial detergent (Tide R) in water. Any changes due to washing are easily detected

from water contact angle measurements of washed and unwashed FCE's and polyurethane

samples, and these results are provided in Table III. Standard deviations calculated for

unwashed samples are higher than those for washed samples. These larger variations in

water contact angle measurements on the unwashed samples are due to the presence of

contamination. The contact angles for washed FCE samples are much higher than for

45
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Table III: Average Water Contact Angles of Washed and Unwashed

Fluorocarbon Elastomers (FCE) and Polyurethane (PU)

Sample

FCE-A

FCE-B

FEC--C

FCE-D

FCE-E

PU

Unwashed

(degrees)

77+6

76±4

80+5

83±4

80+3

80+4

Washed

(degrees)

92+2

94=[=1

93+1

96+1

96±1

70±2
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unwashed ones, while a lower angle resulted for the polyurethane after washing. The reason

for these trends will be explained later using surface-composition results obtained from

ESCA analysis.

SEM photomicrographs given in Figure 13, clearly illustrate differences in elastomer surfaces

before and after washing. SEM photomicrographs of the unwashed samples show non-

homogeneous surfaces with large numbers of holes or irregular patterns. In contrast, the

photomicrographs of washed samples show homogeneous and smooth surfaces with small

numbers of holes or irregular patterns. Thus, the washing and rinsing process have removed

the non-homogeneous top layer (probably contaminants) of the unwashed sample, and left

an apparently clean surface. So the lower contact angles for the unwashed surfaces might

be caused by a covering layer on the surface. SEM photomicrographs of the polyurethane

sample show minimal changes. However, the average contact angle of washed polyurethane

is lower than for the unwashed one. No clear cause for this may be concluded from the

SEM photomicrographs.

SEM photomicrographsof stretchedand unstretchedTeflon R tape are shown in Figure 14.

The photomicrographs of unstretchedtape surfaceshow spots (islands)which are smooth

and homogeneous with no holes.These spotsare connected by ridgeswhich are parallelto

each othersand form differentsizedgaps. These ridgeshave been deformed by stressapplied

normal tothem asshown inphotomicrographsofstretchedtape inFigre14. However, tests

usingthe air-gunshow that alterationinthissurfacestructureappears to have littlteeffect

on the number of insectsstickingonto the Teflon R tape.

Comparison of ESCA results of selected samples lead to a clearer understanding of the

observed changes in the contact angles and differences in the SEM photomicrographs due

to washing. As shown in Tables IV and V, some of elements detected on the unwashed

samples are not present on the washed samples. The atomic percent ratios given in Table V

are calculated by comparing the atomic composition of each element to the value for carbon.

For mos_ samples, washing has removed some or all of the contamination on the unwashed
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unwashed FCE-A washed FCE-A

unwashed FCE-B washed FCE-B

Figure 13: SEM photomicrographs of washed and unwashed elas-

tomers: There are a large number of holes or irregular patterns

on unwashed samples, but smooth surfaces with a small number

of holes or irregular patterns are seen in the photomicrographs of
washed elastomers.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAI_t-i
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unwashed FCE-C washed FCE-C

unwashed FCE-D washed FCE-D

Figure 13 continued.

ORIGINAL PAGE

BLACK AND WI_TE PHOTOGR,UlBI
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unwashed FCE-E washed FCE-E

unwashed neoprene washed neoprene

Figure 13 continued.

ORIGINAL PAGE

BLACK AND-WHITE PHOTOGRAPH
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unwashed Viton R washed Viton R

unwashed polyurethane washed polyurethane

Figure 13 continued.

ORIGINAL PAGE"

BLACK AND WHITE PHOTOGRAPH
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unstretched Teflon R tape

stretched Teflon R tape

Figure 14: SEM photomicrographs of stretched and unstretched

Teflon R tape:

om_L :PAGe
_L!kCK ,AND WHITE Pt_OT_
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sample surfacesdue to elementssuch asnitrogen,calcium,sulfurand silicon.The presence

ofsuch contaminationalteredwater contactanglesforthe unwashed sample surfaces.Also,

it may be concluded that these elements formed the non-homogeneous top layershown

in the SEM photomicrographs,but which isremoved by washing. ESCA analysesof the

unwashed and washed FCE elastomersshow a largeincreaseofthe fluorinecontenton the

surfacesof the washed samples. Since the surfacecontaminants are removed by washing,

the highlyfluorinatedsurfacesof the FCE samples become exposed.

The reason for changes in the contact angles of the washed samples may be explained

by comparison of the fluorine composition obtained from ESCA spectra. The fluorine

composition on a polymer surface has an important effect on the contact angle; the surface

with a higher fluorine composition has a lower surface energy, and hence a higher contact

angle results. The calculated atomic fraction of fluorine on the washed FCE surfaces is

higher than on unwashed ones, so that higher contact angles are observed for the washed

surfaces. The polyurethane sample shows the opposite result from FCE samples; a very

small amount of fluorine (0.7%) has been removed from the surface after washing, which

results in a lower contact angle after washing.

4.1.2 Contact Angle and Critical Surface Tension Measurements

Contact angle measurements using water/ethanol solutions with different volume ratios for

FCE's, neoprene, Viton a, and polyurethane sample elastomers are summarized in Table VI.

At any water/ethanol volume ratios, contact angles for neoprene and Viton R are higher than

any other samples, while the lowest contact angles are obtained with the polyurethane sam-

ple. These measurements yield an extrapolated critical surface energy of about 25 dynes/cm

for all samples shown in Figure 15 and Table VII. This unexpected constant value is close to

the surfaceenergyofpure ethanol.These resultsare similarto thoseobtained by Dann [32],

when criticalsurfaceenergiesof variouspolymers were closeto 25 dynes/cm as shown in

Table VIII.Although no definiteconclusioncan be drawn at present,one possibilitythat
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Table IV: ESCA Atomic Composition (_) of Washed and Unwashed
Elastomer Samples.

Sample

Unwashed FCE-A

Washed FCE-A

Unwashed FCE-B

Washed FCE-B

Unwashed FCE-C

Washed FCE-C

Unwashed PU

Washed PU

Photopeak

Cls Ols Fls Si2p Nls Ca2p S2p

78.0 8.5 8.8 2.8 1.5 0.6 0.2

63.0 3.2 33.0 0.5 -- -- --

72.0 9.0 14.0 2.7 1.3 0.5 --

64.0 6.7 28.0 1.9 -- -- --

73.0 9.1 12.0 3.4 1.6 0.4 --

60.0 4.0 36.0 0.2 0.2 -- --

82.0 13.0 0.7 1.7 0.8 1.5 --

81.0 16.0 -- 0.4 2.4 -- --
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TableV: ESCA Atomic Ratios of Washed and Unwashed Elastomer

Samples.

Sample

Unwashed FCF_,-A

Washed FCE--A

Unwashed FCE-B

Washed FCE-B

Unwashed FCE-C

Washed FCE-C

Unwashed PU

Washed PU

Ratio

o/c F/C si/c N/C Ca/C S/C

0.110 0.110 0.036 0.019 0.008 0.003

0,051 0.520 0.008 -- --

0.120 0.190 0.038 0.018 0.007 --

0.100 0.440 0.030 -- -- w

0.120 0.160 0.046 0.022 0.005 --

0.067 0,600 0.003 0.003 --

0,160 0.009 0.021 0.010 0.018 --

0.200 -- 0.005 0.030 _
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may account for this result is that ethanol preferentially adsorbs on the low energy polymer

surfaces, and invalidates the use of water/ethanol solutions to measure _/c.

As an alternateapproach,solidsurfaceenergiesmay be calculatedusingthe Owens-Wendt-

Young equation given in Equation 3.5. This equation predictsthat a plot of "7/(iq-

cos0)/2(_f)I/2versus(_/_/d)I/2willbe a straightline.Dispersionand polarsolidsurface

energiesare obtained from the intercept((_/d)I/2)and slope ((_/_)i/2),respectively.The

solidsurfaceenergiesofFCE's, neoprene,VitonRand polyurethanewere calculatedfrom the

sum ofdispersionand polarsurfaceenergies,which were obtainedby fittingtheexperimen-

taldata to the Owens-Wendt-Young equation,usinglinearregression.Since adsorptionof

ethanolonto the sample surfaceisexpected as describedin the previousparagraph, only

the four highestcontactanglesofwater/ethanolsolutionswere used.

As shown inTable IX, the surfaceenergiesofthe FCE samples are approximatelythe same

as the surfaceenergiesof the VitonR and neoprene.However, these resultsare unexpected

sincethe contactanglesof theselasttwo samples are largerthan for the FCE samples for

any of the water/ethanol volume ratios,as shown in Table VI. This might be due to the

small differencesin measured contactanglesbetween VitonR, neoprene and FCE samples.

These small differences become insignificant in the calculation of _/l (1 +cos0)/2(_1_)1/_ which

implies that water/ethanol mixtures might be inappropriate to use with the Owens-Wendt-

Young equation for discriminating small differences in solid surface energies. However,the

surface energy for polyurethane is calculated to be 32 dynes/cm, higher than any other

elastomers. This higher value for polyurethane is expected since contact angles obtained

with any water/ethanol volume ratio are much lower than for the other samples as shown in

Table VI. Thus the results of the surface energies obtained from the Owens-Wendt-Young

equation are somewhat more reliable than those obtained from extrapolated critical surface

energies.

Contact angle measurements using water, glycerol,and formarnide for the polymer films

are provided in Table X. The solidsurfaceenergiestogetherwith theirpolar and diaper-
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Table VI: Contact Angle Measurements With Water/Ethanol Solu-
tions at Different Volume Ratios.

Sample

FCE-A

FCE-B

FCE--C

FCE-D

FCE-E

PU

Neoprene

VitonR

Water/Ethanol (ml/rnl)

loo/o 9o/lo 7o/ao[5o/5o 4o/6o
92±2 85i2 66+2

69±2

67±3

65±2

67±2

48±2

75+2

76_2

94±1 84+3

93+1 83+3

96+1 84+3

96+1 84-t-3

70+2 60+2

102+1 93+2

103+2 95±2

50+2 48+1

53±2 46+3

51+3 48_2

47+2 46+2

50+1

28+3

61±2

66±2

38+1

23+2 spreads

57+2 44+1

55+2 40+1

30/70 2o/8o
40+1 25+3

39+1 28+2

36+2 spreads

34+2 23+3

31+1 spreads

spreads

39+1

39+1
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Figure 15: cos 0 versus surface energy of water/ethanol solution: The
plots of cos 0 vs. surface energy of water/ethanol solution at different
volume ratios for elastorners are constructed to obtain the critical

surface energies ('_c). % is the surface energy at cos 0 : 1.
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TableVII: Extrapolated Critical Surface Tensions (%) Obtained from
Plots of cos0 versus Liquid Surface Tension Using Wa-
ter/Ethanol Solutions at Different Volume Ratios.

Sample 7c (dynes/cm)

FCE-A

FCE-B

FCE-C

FCE-D

FCE-E

PU

Neoprene

VitonR

26

27

27

27

28

29

27

27



61

Table VIII: Critical Surface Tensions (%) of Various Polymers Using
Water/Ethanol Solutions According to Dann.

Polymer -/_ (dynes/cm)

Teflon

Polyethylene

Polystyrene

Polyvinyl chloride

Polymethyl methacrylate

Polyethylene terephthalate

Nylon 11

Nylon 6,6

19.0

25.5

27.0

26.0

26.5

27.0

26.0

28.0

1. Reference [32].
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Table IX: Critical Surface Tensions (%) of the Elastomers Obtained
from Plots Using the Owens-Wendt-Young Equation.

Elastomer

FCE-A

FCE-B

_8

(dynes/cm)

21

19

Correlation

Coei_icient(r)

0.9172

0.9282

FCE-C 21

FCE-D 25

FCE-E 23

PU 32

Neoprene 20

VitonR 20

0.9743

0.9164

0.9164

0.9725

0.8550

0.7663
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sioncomponents, obtained from slopesand interceptsby fittingthe experimentaldata to

the Owens-Wendt-Young equationusing linearregression,are given in Table XI. A wide

range of polymer surfaceenergiesare obtainedfrom the lowestvalueof5 dynes/cm forthe

teflontape to the highestvalueof44 dynes//cmforthe PVF, which are expected from the

contactangle measurements with water,glyceroland formamide. Correlationcoefficients

calculatedforany polymer sample (exceptTeflon R tape) are betterthan those calculated

forwater/ethanolsolutionseriesgiven inTable VII.

As shown in Table X, a wide range of water contact angles for sample surfaces are obtained.

The samples with larger contact angles are expected to have lower surface energies than

those with smaller contact angles. The surface energies obtained from plots of the Owens-

Wendt-Young equation for FCE elastomers show no significant differences in their values,

while little differences in water contact angles are observed for these sample elastomers.

Thus, the water contact angles for a given set of samples, which are easily measured without

having to make a large number of contact angle measurements with various liquids, can

indicate a relative ordering of surface energies for the samples. Since the contact angle is

inversely related to the surface energy, any sample with a high water contact angle has a

low surface energy. For example, the Teflon R tape which exhibits the largest water contact

angle of 121 ° is expected to have the lowest surface energy, while the highest surface energy

for the PVF sample with a water contact angle of 60° is expected. As predicted from the

water contact angle measurements, the lowest value of 5 dyne/cm and the highest value

of 44 dyne/cm for the Teflon R tape and PVF, respectively, are obtained using the Owens-

Wendt-Young equation as described previously.

4.1.3 Determination of Surface Composition

The calculatedelementalatomic compositionsand ratiosforFCE's, polyurethane,neoprene

and VitonR elastomersare listedin TablesXII and XIII. Bulk fluorineconcentrationsof

FCE-A and B are reported to be the same (69_) while FCE-C, D and E are reported
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Table X: Contact Angles of Water, Glycerol and Formamtde on Poly-
mer Films.

Polymer Film

Polypropylene

Pol,'ester

CTFE

Polycarbide

Polyethylene

Nybar a

PVF

TEFZEL

FEP

Teflon R Sheet

Tefon R Tape

Contact Angle (degrees)

Water

101 + 3

65+2

92±2

77=£ 1

95+2

109 =h3

6O+2

95+2

108+ 1

108=h 2

12hhl

Glycerol

90+ 2

62+ 1

82-1-2

67± 1

86+2

54=52

85+2

99_ 1

104+1

123+2

Formamide

83J=2

58_:2

73+2

56+ I

82=h 1

37=h2

76+2

90±1

9ht=l

108J=3
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Table XI: Surface Energles (%) and Their Polar (-_) and Dispersion

(_/d) Components of Polymer Films.

Sample

Polypropylene

Polyethylene

Polyester

(dynes/cm)

12.5

1.2

22.3

(dynes/cm)

4.9

21.0

14.2

(dynes//cm)

17.4

22.2

36.5

PVC

PVF

TEFZEL

FEP

CTFE

Polycarbonate

Teflon R Sheet

Teflon R Tape

19.1

17.6

3.1

0.8

3.5

25.2

12.4

1.3

16.3

26.3

19.2

14.5

20.6

8.5

0.1

3.7

35.4

43.9

22.1

15.3

24.1

33.7

12.5

5.0

Correlation

Coefficient

0.9888

0.9897

0.9995

0.9981

0.9839

0.9748

0.9087

0.9772

0.9862

0.9337

0.7226
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to be somewhatlower (66%)by the manufacturer(3M). However, the surface fluorine

concentrations of FCE's calculated from the ESCA spectra differ from the bulk composition,

but differences in chemical composition between the bulk and the surface of a polymer

are well documented. The polymer films tested in the air-gun are grouped according to

the elemental atomic fraction obtained from the ESCA spectra. As shown in Tables XIV

and XV the polymer films are separated into two groups: fluorinated and nonfluorinated

polymers, and the relationship between the surface energy of these samples and the number

of insects sticking is examined separately.
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Table XII: ESCA Atomic Composition Determined on Elastomer Sam-
pies.

Sample

FCE-A

FCE-B

FCE--C

FCE-D

FCE-E

PU

Neoprene

VitonR

Photopeak

Cis Ols Fls Si2p Nls Cl2p Pb4f

53.0 3.2 33.0 0.5 -- w

64.0 6.7 28.0 1.9 -- _ --

60.0 4.0 36.0 0.2 0.2 -- --

59.0 4.3 36.0 0.3 -- _

60.0 5.4 34.0 0.7 -- -- --

81.0 16.0 _ 0.4 2.4 --

62.0 20.0 -- 18.0 _ I.I --

46.0 23.0 12.0 18.0 0.5 -- 1.0
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Table XIII: ESCA Atomic Ratios of Elastomer Samples.

Sample

FCE-A

FCE-B

FCE-C

FCE-D

FCE-E

PU

Neoprene

Viton R

0.060 0.620 0.009 -- --

0.100 0.440 0.030 -- --

0.0672 0.600 0.003 0.003 --

0.073 0.610 0.005 -- --

0.090 0.570 0.012 -- --

0.200 -- 0.005 0.030 --

Ratio

0/C F/C Si/C N/C CI/C Pb/C

0.320 -- 0.290 -- 0.018 --

0.500 0.260 0.390 0.011 -- 0.022
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Table XIV: ESCA Atomic Composition Determined on Polymer Films.

Polymer

Nonfluorinated

Fluorinated

Photopeak

Cls Ols Nls Nals Clls Fls Sils

Polyethylene 99.4 0.6 .....

PVF

CTFE

FEP

TEFZEL

Teflon R

Polypropylene 92.3 5.0 2.7

Polyester 72.4 27.6 --

Polycarbonate 79.8 18.1 --

72.0 8.5 --

51.8 2.1 --

31.3 0.3 --

32.5 0.6

37.2 0.5 --

Teflon R Tape 33.5 0.6 --

1.5 0.6 -- --

-- -- 19.5

-- 10.5 34.3 1.3

-- -- 68.6

-- -- 66.9 --

-- -- 62.3 --

-- -- 65.9 --
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4.2 Insect Impact Studies

The effects of elasticity and surface energy of polymers coated on aluminum on reducing the

insect sticking problem are examined. As described in Chapter 3, the normalized percentage

(NP) for each sample is calculated and compared instead of the absolute number of insects

on different samples. Thus, a sample with a larger NP value has a greater number of insects

sticking onto its surface than one with a lower NP value.

4.2.1 Insect Flux Across the Half-Cylinder

The uniformity of the insect flux across the half-cylinder was examined in the road test

using aluminum strips as described in Chapter 3. The results from the three road tests

performed to study the insect distribution across the half-cylinder are given in Table XVI.

The deviation (in percent) for each strip from the average number of insects collected during

each road test and all three road tests is calculated using the following equation.

PD - Ni - Naz x 100 (4.1)
Ni

where PD is the average deviation (in percent), Ni is the average number of insects for

one strip based on the total number of insects sticking on all sample strips, and Nal is

the number of insects sticking to an aluminum strip. The value of Nal in turn is given

by the total number of insects on all aluminum strips divided by the number of aluminum

strips. As shown in Figure 16, a nonuniform insect distribution or flux across the half-

cylinder resulted in each of three tests. Smaller deviations are observed for most strips if

the combination of all three tests are considered instead of each individual test. However,

a deviation of =t=20% is still too large to assume a uniform insect distribution across the

half-cylinder in the road test even if the average of three road tests per sample is used.

Thus, all three road tests show a nonuniform insect density distribution across the half-

cylinder presumably due to a variable insect flux. This variable insect flux probably intro-

duced significant experimental error in the results obtained during road tests in the phase
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TableXV: ESCA Atomic Ratio Determined on Polymer Films.

Polymer Photopeak

O/C N/C Na/C CI/C F/C Si/C

Nonfluorinated Polyethylene 0.006 .....

Polypropylene 0.054 0.029 ....

Fluorinated

Polyester 0.381 .....

Polycarbonate 0.227 -- 0.019 0.008 -- --

PVF 0.118 -- -- -- 0.271 --

CTFE 0.041 -- -- 0.203 0.662 0.026

FEP 0.010 -- -- -- 2.192 --

TEFZEL 0.018 -- -- -- 2.058 --

Teflon R 0.013 -- -- -- 1.675 --

TeflonRTape 0.018 -- -- -- 1.967 --
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TableXVI: Insect Distribution Across the Half-Cylinder Using Alu-
mlnum Strips.

Postion of

Aluminum Strips

from Left Edge of

the Half-Cylinder

6

7

8

9

10

11

12

Number of Insects

May28 July 4 July 20 Total

6 17 51 74

9 25 49 83

5 12 45 62

3 9 64 76

5 17 42 64

2 29 46 77

6 21 46 73

3 19 35 57

4 23 43 70

3 23 38 64

7 23 39 69

6 17 56 79
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Table XVI continued

Postion of

Aluminum Strips

from Left Edge of

the Half-Cylinder

Number of Insects

13

14

15

16

17

18

19

20

21

22

23

24

25

26

May 28 July 4

8 28

6 18

6 18

6 14

10 13

7 27

8 22

7 18

6 15

4 17

4 25

4 19

4 15

3 12

July 20

47

50

55

50

45

42

46

44

43

43

38

43

52

44

Total

83

74

79

70

68

77

78

69

64

64

67

88

71

59
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sticking on each aluminum strip, calculated by Equation 4.1 clearly
shows a nonuniform insect distribution across the half-cylinder.
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I study andin the results reported by Siochi, et al. [25,26]. The probability of mounting

a sample at a position of high or a low insect density is large enough so that no reliable

comparison between samples can be achieved. It was also noticed that various sizes and

varieties of insects were collected on the aluminum strips. Since different sized insects posses

different momenta (which is a function of velocity and mass), varying impulse forces would

be expected on impact. Also one variety of insect might require a smaller impact force

acting on its body to burst open than another. Thus, differences in the sizes and varieties

of insects in the environment may also have introduced some additional experimental error.

4.2.2 Results from the Road Tests

The normalized percentages (NP) calculated from the total number of insects collected

during the phase I and II studies are given in Table XVII. The results obtained by using

thirteen strips for each polymer sample using the modified road test (phase II study) are to

be considered more reliable than those obtained with only five strips per sample from the

phase I study. This is because statistical errors are reduced by the larger number of runs,

and by the new arrangement of using a single type of polymer together with aluminum

control strips in the modified road test which reduces some of the experimental errors

associated with the nonuniform insect flux across the half-cylinder.

There appears to be at best only small differences in the value of the NP between any of the

polymer samples and the aluminum control strips obtained from the phase I and II studies.

Some NP values obtained from the phase I study are higher than 100_, while all the NP

values obtained from the phase II study are less than or close to 100_. For example, the NP

values of Viton R and FCE-E tested in the phase I study are 105_ and 121%, respectively,

which means there are larger numbers of insects sticking onto these elastomer surfaces than

on the aluminum surface. These results from the phase I study are different from those of

Wortman [23] who reported that the elasticity of rubber or foam rubber can prevent insects

from bursting open and thereby reduce the number of insects sticking. Since elastomers
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Table XVII: Normalized Percentage (NP) of Samples Tested in the
Phase I and II Studies,

Polymer Phase I (%) Phase II (%)

FCE-A

FCE-B

FCE-C

FCE-D

FCE-E

PU (0.79 mm)

PU (1.59 mm)

Neoprene

Viton R

SBR-3C

SBR-7C

SBR-26

SBR-17B

82

98

82

9O

121

99

84

88

105

86

88

92

88

78

97

91

79

82
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can providemore elasticitythan metal (aluminum) surface,the chance ofpreventinginsects

from burstingopen isgreater,thereforefewerinsectswould be expected to stickonto the

elastomers.Perhaps, those NP valueshigherthan 100% obtained from the phase I study

are due to the experimentalerrorsintroducedduringthe road tests.

4.2.2.1 Insect Adhesion vs. Elasticity from the Phase I Study

As indicatedin Table IX, similarsurfaceenergiesof the FCE surfacesare obtained from

measurements using water/ethanolsolutionsat differentvolume ratios.Although the sur-

faceenergiesobtained for neoprene and VitonRare similarto thosefor the FCE samples,

thesetwo samples exhibithighercontactanglesforany water/ethanol volume ratio.Itis

assumed thatuse of the water/ethanolserieswith the Owens-Wendt-Young equation isin-

appropriatefordiscriminatingsmalldifferencesinsolidsurfaceenergies.On the otherhand,

contactangleson the polyurethanesurfacefor any water/ethanolvolume ratioare much

higherthan on the otherelastomers.In addition,highersurfaceenergyforthe polyurethane

sample than forthe other elastomersare predictedby the Owens-Wendt-Young equation

as expected.

Due to differencesinsurfaceenergy and modulus ofelasticity,allthe elastomerstestedin

the phase I study are dividedintothreegroups. Since the effectsof both surfaceenergy

and modulus ofelasticityare investigated,one ofthesetwo parameters must be fixedwhile

the effectof other parameter on insectadhesion isinvestigated.For example, to study

the correlationbetween the number ofinsectsstickingonto the surfaceand the modulus of

elasticityofthe elastomers,theirsurfaceenergiesmust be the same or at leastinsignificantly

different.The firstgroup consistsofFCE's and the second group consistsofneoprene and

VitonR. Samples withineach group have similarsurfaceenergies,but differentvaluesofthe

moduli ofelasticityas giveninTable XVIII. The thirdgroupsismade up of polyurethanes

which have identicalsurfaceenergy but differentthicknessesand moduli of elasticity.
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Table XVIII: Modulus of Elasticity (ME) and Normalized Percentage
(NP) of Elastomers Tested in the Phase I Study.

Polymer ME (kPa) NP (%)

FCE-A

FCE-B

FCE-C

FCE-D

FCE-E

1,3301

2,8101

9721

1,3601

2,9001

82

98

82

9O

121

PU(0.79 mm)

PU(1.59 mm)

Neoprene

Viton R

34,8702

18,0302

7,7902

5,9302

99

84

88

105

I. Moduli of Elasticity(ME) givenare at 200% elongationand were provided by 3M.

2. Moduli of Elasticity(ME) givenwere calculatedfrom a plotobtainedon the Instron.

A cross-headspeed was 10.0ram/rain.
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The NP values of these samples are listed against their moduli of elasticity elasticity in

Table XVIII and the NP values of the first group of elastomers are plotted as a function of

moduli of elasticity in Figure 17. There is large scatter in the data, and no correlation is

obtained between the NP values and the moduli of elasticity. The NP values of the Viton R

(105%) and neoprene (88%) are higher than expected, since the Viton R sample with a lower

modulus of elasticity is expected to reduce the chance of an insect bursting open further

than the neoprene sample. Perhaps experimental errors due to a variable insect flux are

large enough so that differences in the NP values due to properties of the elastomers become

insignificant. The NP value obtained for the 1.59 mm thick polyurethane sample (83%) is

lower than for the 0.79 mm thick sample (99%). There are two possible causes for such a

difference. One of them is due to the difference in the thickness between two polyurethane

samples. Wortman [23] found that as the thickness of the polymer increases, the elasticity

becomes more significant, so the number of insect sticking onto a 1.59 nun polyurethane

sample is expected to be lower than for a 0.79 mm sample. The other possible reason for

such a reduction is due to modulus difference as stated previously. No definite conclusion

can be made, and it is probably inappropriate to compare the number of insects sticking

on the polyurethane samples as a function of modulus of elasticity.

4.2.2.2 Insect Adhesion vs. Elasticity from the Phase II Study

The FCE and SBR samples tested in this study are divided into two groups. Samples from

both groups have similar surface energies but different moduli of elasticity, and are separated

into two groups mainly because they are different types of elastomers. The NP values are

listed with their water contact angles in Table XIX against their moduli of elasticity. These

NP values of the FCE samples are generally less than the ones obtained in the phase I

study. Values of the NP are plotted as a function of modulus of elasticity for the FCE and

SBR samples in Figure 18. The curve for the FCE sample is similar to the plots presented

in Figure 17 for FCE's in the phase I study. However, since these curves are obtained
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Table XIX: Modulus of Elasticity (ME) and Normalized Percentage

(NP) of Elastomers Tested in the Phase II Study.

Polymer Owat,r

FCE-A 92±2 1,3301

FCE-B 94+1 2,8101

FCE-C 93±1 9721

FCE-D 964-1 1,3601

FCE-E 96+ 1 2,9001

SBR-3C 99±3 4,7802

SBR-7C 95±2 6,4202

SBR-26 96±2 5,060 _

SBR-17B 95±2 4,8902

ME (kPa) NP (%)

86

88

92

88

78

97

91

79

82

1. Moduli of elasticity given are at 200% elongation and were provided by 3M.

2. Moduli of elasticity given are at 200% elongation and were provided by Fort Belvoir,

VA.
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from thirteen runs per sample with the new arrangement of sample and control strips, they

are probably more reliable than the curves obtained in the phase I study using only five

runs per sample. The results again indicate no correlation between the number of insects

sticking onto the FCE or SBR surfaces and the modulus of elasticity of these samples. This

is possibly because the moduli of elasticity of either FCE or SBR elastomers are too high

to give any significant differences in the number of insects sticking onto them. Further

discussion of the effect of the modulus of elasticity is given in Section 4.2.4.

4.2.2.3 Results for Teflon R Tape

The NP value of 30% is obtained for the Teflon R tape mounted with non-spongy tape, while

27% is obtained for the tape mounted with spongy tape. Thus, the NP value for both the

Teflon R tape mounted with either spongy or non-spongy tape is less than 50%, which is the

largest reduction in insect sticking observed for any test in this study. A possible reason

for such a large reduction in the number of insects sticking on the both samples is the low-

energy surface of the Teflon R tape, which reduces sticking of the fluid from the impacted

insect onto the tape surface. A further small reduction (approximately 7%) of the NP value

for the teflon tape sample attached to spongy tape compared to non-spongy tape may be

due to the lower modulus of elasticity of the sponge-like mounting tape.

4.2.3 Results from the Phase III Study

Further studies on the effects of surface energy and modulus of elasticity on insect adhesion

were done using the air-gun and Drosophila to simulate the insect impact process under

controlled conditions. As stated above, the road tests indicated the greatest reduction in

the number of insect sticking onto the surface occurred when Teflon R tape is used, whether

supported by a spongy-like mounting tape or by double-stick tape. Since this reduction

is assumed to be due to the low surface energy of the Teflon R tape, the effect of surface
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energyon insect adhesion was examined in the phase III study with polymer films of various

surface energies using the air-gun.

The NP values of sample films tested with the air-gun are listed in Table XX with their

surface energies (_/8) and water contact angles, which are inversely related to the surface

energy. While the NP values for a few samples are larger than the 100% for the aluminum

control, the NP value of the Teflon s tape is only 31%, which is similar to the NP value

obtained from the phase II study for this sample. The NP values for insects sticking onto

fluorinated and non-fluorinated samples are plotted as a function of surface energy in Fig-

ure 19. The NP values show a direct relation to the surface energy. That is a larger number

of insects stick on a polymer surface with a larger surface energy than one with a lower

surface energy. This relation is true for both fluorinated and non-fluorinated polymers. In

fact, the correlation between the NP and surface energy is virtually identical for both sets

of samples as shown in Figure 19, so that separation of the polymer films into groups is

unnecessary.

The NP valueisalsoplottedas a functionofwater contactangleas shown inFigure 20,and

an inverserelationbetween the NP valueand the contactangleisobtained as expected.It

isnoticedthat the NP valueforthincoatingof NyebarR iswellfittedon the curve given

inFigure20. Water contactanglesareeasierto measure than solidsurfaceenergies,which

requireseveralcontactanglemeasurements usingdifferentliquids.The water contactangles

ofthe samples testedin thisstudy may thusbe more convenientlyused to correlatethe NP

valueswith solidsurfaceenergy.

The insect impact process onto Teflon R tape mounted with non-spongy double stick tape

and aluminum surfaces was recorded on a video tape, and viewed at slow speed, permitting

viewing of the impacting process in slow motion. When an incoming insect impacts on the

Teflon R tape surface and bursts open, its burst-open body sticks on the surface with fluid

ejected from within the insect. However, in a large number of cases, the burst-open body

is subsequently moved along the surface after a short period of time by the incoming air
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Table XX: Normalized Percentage (NP) of Insect Sticking on Various

Polymers with Different Surface Energy (Water Contact
Angles)

Polymer

PVF

Polyester

Polycarbonate

CTFE

Polyethylene

TEFZEL

Polypropylene

FEP

TeflonR Sheet

NyebarR

TeflonR Tape

9_ater

(degrees)

60+2

65+2

77± 1

92+2

95±2

95±2

101±3

108+1

108+2

109+3

121--t'-1

,,_t#

(dynes/cm)

43.9

36.5

33.7

24.1

22.2

22.1

17.4

15.3

12.5

5.0

NP

(%)

108±6

105-{-6

97+7

96±5

88±4

87-I-7

84±4

76±4

71-{-5

68±5

31±1
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flow and finallyblown offthe surfacealtogether.This has the effectof reducing the total

number of insectsthat remain adhered to the surfaceof the Teflon R tape. On the other

hand, allinsectswhich burstopen afterimpacting the aluminum surfaceremain adhered

to the surfaceand are not easilyblown offby the incoming airflow.As a result,a larger

number of insectsare counted on the aluminum surfaceaftera run iscompleted than on

the surfaceofTeflon R tape.

The NP valuesforthe polymers attached to the sample holderwith sponge-likemounting

tapearelistedinTable XXI and plottedasa functionofsurfaceenergyinFigure21. The NP

valuesforallsamples other than Teflon R tape areapproximately 57+3%. These NP values

are lessthan those obtained forthe same samples mounted with the non-spongy double-

sticktape. For example, the NP valueforthe polyesterfilmattachedto the sample holder

with non-spongy tape is108%, while the NP valueforthe same polyesterfilmattachedby

spongy tape isonly 59%. This reductionof the NP value ofinsectsstickingonto polymer

filmsurfacessupported by spongy tape isdue to the additionalelasticityprovided by the

spongy tape. The NP valueforTeflon R tape attachedonto the sample holderwith spongy

mounting-tape isonly 15%. This valueislower than forother filmsattached in a similar

fashionlargelydue to the very low surfaceenergy of Teflon R tape. Itshould be noted that

attachingthe Teflon R onto the sample holderwith spongy mounting tape leadsto a 50%

reductionin the NP value(from NP = 31% to NP = 15%) obtainedwithout the use ofthe

spongy mounting tape. A similartrend was observed in the phase IIroad test,although

the reductionin the NP value obtained by attachingthe Teflon R tape with spongy tape

was only 13% (from NP = 31% to NP = 27%). This differencemay be due to differencesin

insectsizeand type in the two testsand alsothe durationofthe test.Slow motion viewing

using video tape of the insectimpacting processonto Teflon R tape mounted with spongy

tape show a largenumber of insectsnot burstingopen while collidingwith the sample

surface.The incoming airflowthen simply blows the insectoffthe surface.

SimilarNP valuesforallthe polymer filmswith the exceptionofTeflon R tape are obtained

regardlessof differencesin theirsurfaceenergiesby usingthe spongy tape as a supporting
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Table XXI: Normalized Percentage (NP) for Various Polymer Films
Mounted on Non-Spongy and Spongy Tapes

Polymer With Spongy Tape (%) With Non-Spongy Tape (%)

PVF

Polyester

Polyethylene

Polypropylene

TeflonRTape

108±7

105±7

88+4

8414

31-I-1

59±5

60+4

6hh5

57+2

15+4
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material as stated above. Perhaps this result is obtained because the effect due to the

elasticity provided by the spongy tape becomes a dominant factor in preventing insect

sticking. On the other hand, both the elasticity of the spongy tape and the low surface

energy of the Teflon R tape affect the number of insects sticking, so that a different NP

value (15%) results for the Teflon 1_tape. Since the spongy tape is a foam containing a large

number of small air-filled holes, its modulus of elasticity is considerably lower than any of

the other elastomers tested in this study. To compare differences in the number of insects

sticking on the sample surface exclusively due to the elasticity effect, tests were carried

out on PVF film supported by additional two elastomers -- Viton R and neoprene. These

results may be compared to those obtained in earlier tests using spongy and non-spongy

mounting tapes. The surface energy of the exposed PVF surface is fixed at 43.9 dynes/cm.

Thus it may be assumed that any observed differences in the NP values from the four cases

are due to differences in the elasticity of the mounting materials. The elasticity of the thin

non-spongy tape is sufficiently small that its effect on the insect impacting process may

assumed to be negligible, so that in this case, the PVF film could be considered as mounted

onto bare aluminum. The results from this study are listed in Table XXII. There are large

differences in the NP values for the PVF film depending on the mounting material used. As

expected, the smallest NP value (59%) is obtained for the sample prepared with the spongy

tape, while the largest value (108%) is obtained with the non-spongy tape. Intermediate

values are obtained with neoprene and Viton R which posses moduli of elasticity lower than

that of the non-spongy tape on an aluminum surface, but higher than the spongy tape.

The results also indicate that a significant difference in the number of insects sticking can

only be achieved for elastomers with fairly low moduli of elasticity. This would be the case

if the reduction in the number of insects sticking onto the surface (or the NP value) is only

a weak function of the modulus of elasticity, until a reasonably low modulus of elasticity is

reached. A further discussion of the effect of elasticity on the mechanics of insect impact is

given in the following section.
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Table XXII: Normalized Percentages (NP) for the PVF Film Mounted
on Various Materials.

MaterialUsed NP (%)

Non-spongy tape

VitonR

Neoprene

Spongy tape

108-I-7

83_8

77-I-3

59±5
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4.2.4 Discussion of Effects of Surface Energy and Elasticity

The fact that insects are observed to stick on all surfaces used in the road test is prima

facie evidence of molecular contact (adhesion) between the insect fluid and the surface.

The high velocity of incoming air has two effects on sticking, namely, increasing the rate of

drying of the insect fluid after the insect has burst, leading to increased viscosity, as well

as forcing the insect fluid to spread over the surface. The reason for the observed change

in the sticking of insects due to the surface energy (for example, TeflonRtape compared to

polyester or PVF) can be explained as follows. Suppose an insect impacting on the sample

surface at high velocity during the road test bursts open. The insect fluid will be wetting or

nonwetting depending on the surface energy of the solid surface. Drops of insect liquid on

low energy surfaces will have reduced wettability, and will therefore require a larger force

to spread over the surfaceso thatthe contactareawith the solidissmall.Thus, in such a

surfacethe drops ofinsectliquidtend to ballup. Thereforethe chance of an insertbody

being blown offthesurfaceby theincoming airflowisgreater,therebyreducingthe number

ofinsectsthatremain stuckonto the polymer surfaceovera periodof time.

The effect of polymer elasticity on the mechanism of the insect impact process may be

best explained by considering an insect of mass rni approaching the sample surface at a

constant velocity of v_. The momentum of the insect just prior to impact is m/v_ and its

kinetic energy is rn_vi2/2. The mass of a typical fruit fly (Drosophila) is approximately

0.2 mg. At an approach velocity of 60 mph or 26.7 m/sec, the insect posses a momentum of

5.34 X 10 -6 N/sec and a kinetic energy of 1.43 X 10-4 J. When the insect impacts the sample

surface, it is decelerated to zero velocity (and hence zero momentum). Simultaneously, the

kinetic energy of the insect is dissipated. If the solid surface is not easily deformable (it

has a high modulus of elasticity), the energy possessed by the incoming insect will be

insufficient to significantly deform the surface. Thus, the insect will be rapidly decelerated.

The impulse force that the insect exerts onto the surface on impact is equal to the rate of

change of momentum during the collision between the insect and the surface. By Newton's
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third law of motion, an equal but opposite force is also simultaneously exerted upon the

insect. Impulse forces are large particularly if the duration of the collision (which equals

the time taken for the insect to decelerate to zero velocity) is small. For example, if the

collision lasts about 1 ms, the force exerted onto the insect is 5.34 X 10 -s N assuming an

incoming velocity of 60 mph. This is a considerable force on such a small organism. The

cross-sectional diameter of a fruit fly is approximately 0.7 turn, so that its cross-sectional

area is 3.85 X 10-7 ms. When the insect collides end-on with the surface, a pressure of

14,000 Pa or 2 psi is exerted on the exoskeleton of the insect. If the collision lasts 0.1 ms,

this pressure increases to 20 psi. If this pressure exceeds the maximum pressure that the

exoskeletonal structure of the insect is capable of withstanding, the insect will burst open.

This analysis clearly shows that the duration of the collision strongly influences the force

and hence the pressure exerted on the insect exoskeleton.

Suppose the insect impacts the surface of a polymer with a low modulus of elasticity. Its

kinetic energy of impact is fixed at rr_ v_/2. Since the polymer has a low modulus of

elasticity, this amount of kinetic energy is capable of deforming the surface of the polymer.

As the polymer surface deforms, it prolongs the collision. That is, the rate of deceleration

of the insect is lower. As a consequence, the rate of change of momentum and hence the

force exerted on the insect are lower. For instance, if the collision lasts 0.01 sec instead

of 0.001 sec; the impulse force exerted on the insect is of the order of 0.5 X 10 -3 N, and

the corresponding pressure exerted on the insect skeleton is only 0.2 psi. If the force and

pressure applied to the insect exoskeleton is reduced to a level below that which causes its

rupture, the insect will not burst upon impact. Thus only a polymer with a sufficiently low

modulus of elasticity is capable of preventing insects from bursting open on impact. It is

also worth noting that the orientation of the insect on impact will vary the pressure exerted

on its skeleton, since the area over which the impact force acts is varied. This together

with the fact that the strength of the exoskeleton varies over the body of the insect might

explain why a few insects do burst open on a sponge-tape backed polymer film.



Chapter 5

Conclusions

Fuel efficiency, which has been a continuing concern of commercial airlines, is accomplished

in part by a wing design that will reduce drag on aircraft. Efficiency, however, is decreased

significantly by the build-up of insect debris on the leading edge of airfoils during the ground

run, climb, and landing. Thus, insect debris roughens airfoil surfaces; the laminar flow over

the wing is replaced by turbulent flow, resulting in increased drag and hence, lower fuel

efficiency.

The feasibility of reducing the number of insects sticking to the airfoils by coating the

leading edges with polymers is investigated in this study. The effects of the surface energy

and elasticity of the polymer on insect adhesion were examined, and a better understanding

of the insect-sticking mechanism on modified wing surfaces has been achieved.

The impact of insects on modified airfoil surfaces was achieved in a laboratory environment

by the use of a device which is capable of accelerating insects up to speeds of 170 km/hr,

and impacting them onto a stationary target. The device is basically an air-gun which

consists of a PVC pipe, T-connector, and nozzle. The PVC pipe is sufficiently long that a

uniform velocity distribution is obtained at its exit. A rectangular plexiglas duct is placed
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at the end of the PVC pipe to prevent the air flow exiting the circular pipe from diverging

into the environment. The target consists of polymer samples in the form of thin strips,

adhesively bonded onto a wide aluminum strip, mounted onto a sample holder which is in

the shape of the leading edge of an airfoil. The sample holder is placed at the exit end of

the rectangular duct, and at the center of its cross-section.

A small flow rate of highly compressed air is passed through the nozzle, and the high degree

of expansion and high velocity of the air exiting the nozzle creates a suction behind the

nozzle which in turn induces a large inflow of air from the surroundings through the feed

chute. This large volume of air is accelerated as it flows past the nozzle, creating a high

velocity flow of air in the downstream section of the pipe. Live fruit flies (Drosophila)

introduced into the feed chute are drawn in with the air and also accelerated to a high

velocity, finally impacting the target placed in the rectangular duct.

A direct relation between the number of insects sticking on sample surfaces and their surface

energies was obtained. When incoming insects impact onto a polymer surface at high

velocity, they may burst open. The liquid from within the insect acts as an adhesive which

bonds the insect debris to the surface. If the surface energy of the polymer is low (low

surface wettability), the liquid will not spread, but instead will ball up providing poor

adhesion between the insect debris and the surface. Thus the number of insects sticking on

a lower energy surface is less than on a higher energy surface.

In addition to surface energy, the elasticity of the polymer also plays a part in determining

the number of insects which stick to the surface. A direct relation between the number of

insects sticking onto sample surfaces and their moduli of elasticity was obtained. Elastomers

with a low modulus of elasticity are capable of greater deformation so that the deceleration

of the insect is lowered. As a consequence, the rate of change of momentum is lower and the

force and pressure exerted on the body of the insect is reduced if it impacts onto a material

with a low modulus of elasticity. This lessens the chance of bursting the insect exoskeleton

thereby reducing the number of insects sticking onto the sample surface. Video examination
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shows in fact, that fewer insects that impact onto a sample with a low modulus of elasticity

do burst open.



Chapter 6

Recommendations

The following are recommended for further study.

1. The momentum of an insect with given mass impacting on the target surface largely

depends on the velocity of the insect, and this momentum determines the pressure

exerted on the exoskeleton of the insect. Since bursting open of the insect body is

determined by this pressure, it is logical to assume that changes in the impact velocity

of the insect will alter the number of insects sticking on the target surface. The effect

of insect velocity on the number of insects sticking on sample elastomers and polymer

films may be investigated by varying air velocity in the air-gun.

2. The effect of the elasticity of elastomers may be studied more extensively using elas-

tomers with a wide range of moduli of elasticity than used in this study.

3. Wortmann [23] found that as the thickness of rubber increases, elasticity becomes

more effective even at the high velocities investigated. The effect of the thickness of

the elastomers is recommended as a variable for further investigation.

4. The contact area between the sample surface and the burst-open insect body varies

depending on the surface energies of the polymers. It might be possible to measure
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this contact area as follows. Strips of translucent or transparent polymer films of

various surface energies are attached to a strip of the clear vinly acetate using the

doulbe stick tape, and affixed to the sample holder as described in Chapter 3. The

areas between the burst-open insect bodies and the polymer surfaces will be visible

from the bottom surface -unused surface of the vinyl acetate if the sample is held

against a light source. Using image analysis, the contact areas of the burst-open

insect body on polymer films of different surface energies may be determined.
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APPENDIX A

CALCULATION OF BUG VELOCITY IN AIR GUN

The purpose of this calculation was to determine if the bug was

accelerated to the air velocity in the distance it traveled from the

point where it was introduced into the alr stream to the airfoil. Thls

distance was 3.81 m. To perform this calculation, several assumptions

were made.

.

4.

5.

I. The fruit fly was modeled as a sphere with a diameter d = 1 mm.

2. The mass, m, of the fruit fly was 0.I mg.

The kinematic viscosity, n, of alr was 15.75 (10) -6 m2/s.

The air stream velocity was 15.23 m/s.

The alr density, p, was 1.1766 kg/m 3.

When the bug was injected into the air stream,

relative to the air stream was 15.23 m/s.

thls velocity is:

its velocity

The Reynold's number Re for

R = Vd = 15.23 m/s I0-3m = 967

e n 15.75 (10) -6 m2/s

The drag coefficient CD for this Re on a sphere is 0.5. A_ the insect

is accelerated, the relative velocity and hence the Re decrease.

Because the CD rises as R e decreases, a calculation based on a constant

CD will glve a lower bound on the velocity of the insect when it reaches

the airfoil.

The drag force FD is given by

V2
= r"d2_ (P T)FD CD _T )
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where V = V a - Vb

a - air

b = bug

0.5 _ I0-6 m2 1.1766 kg/m 3 (15.23 m/s - Vb)2

FD " 8

FD = 0.924 (10) -6 (15.23 - Vb)2 .,.I

The dynamic model for the acceleration of the bug is Newton's

second law

FD = m Vb = 10-7 kg Vb ...2

Equation 2 is solved for Vb and Eq. 1 is substituted for FD

Vb = 9.24 (15.23 - Vb)2 ...3

Equation 3 is nonlinear and was solved by a Runga-Kutta numerical

integration using a code Personal Simulation Language (PSL), developed

at VPI&SU.

The solution to Eq. 3 is shown in Fig. AI. The dotted lines show

that when the bug has traveled 3.8 m, its velocity is 14.8 m/s which is

97 percent of the freestream velocity. Because the drag coefficient was

assumed to be constant, this velocity represents a lower bound of the

actual bug velocity. Consequently, the bug velocity can be assumed to

be equal to the air velocity with less than 3 percent error.
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