294 research outputs found

    Influences of physical oceanographic processes on chlorophyll distributions in coastal and estuarine waters of the South Atlantic Bight

    Get PDF
    Coastal and estuarine waters of the South Atlantic Bight are highly productive, with primary production of 600-700 gC/m2/y. While controls and fate of this production are conceptually well understood, the importance of meteorology and physical circulation processes on phytoplankton has not received equivalent attention. Here, we describe the effects of wind stress and tidal currents on temporal and spatial distributions of phytoplankton biomass represented as chlorophyll a (chl a). Moored instruments were deployed and shipboard sampling was conducted in the North Edisto estuary (South Carolina) and adjacent inner shelf waters during four, two-week field studies in May and August 1993, and June and September 1994. Local wind regimes induced upwelling- and downwelling-favorable conditions which strengthened or reduced vertical density stratification in the coastal frontal zone, respectively, and shifted the location of the front. Chl a in shelf waters was more or less homogenous independent of the wind regime, while chl a on the estuary delta was generally vertically stratified. Within the estuary, chl a concentrations were positively correlated with the alongshore component of wind stress; chl a was not correlated with the weaker cross-shelf component of wind stress. Highest chl a occurred during strong downwelling-favorable events. The quick response time to wind forcing (6-12 hrs) implied a direct effect on chl a distributions and not a stimulation of growth processes. The source of the elevated chl a in response to wind forcing was apparently resuspension of settled and epibenthic algal cells. Tidal currents also influenced the vertical distribution and concentration of chl a. Time series sampling on the estuary delta showed that, with increasing velocity of ebb and flood tide currents, the relative contributions of pennate and centric diatoms with attached detritus and sand grains also increased, indicating that tidal resuspension of settled and epibenthic microalgae also occurred. Vertical stratification of chl a (highest concentrations near the bottom) began to degrade upon mixing by tidal currents with velocities as low as 10 cm/sec. Homogenization of 5-7 m water columns was fully achieved at velocities of 20-30 cm/sec. The data document the direct and comparatively immediate (timescales of minuteshours) impact of tidal and wind energy on concentrations and distribution patterns of phytoplankton in coastal and estuarine waters of the South Atlantic Bight

    Social and health epidemiology of immigrants in Germany: past, present and future

    Get PDF
    Razum O, Wenner J. Social and health epidemiology of immigrants in Germany: past, present and future. Public Health Reviews. 2016;37(1): 4.Germany has experienced different forms of immigration for many decades. At the end of and after the Second World War, refugees, displaced persons and German resettlers constituted the largest immigrant group. In the 1950s, labor migration started, followed by family reunification. There has been a constant migration of refugees and asylum seekers reaching peaks in the early 1990s as well as today. Epidemiological research has increasingly considered the health, and the access to health care, of immigrants and people with migration background. In this narrative review we discuss the current knowledge on health of immigrants in Germany. The paper is based on a selective literature research with a focus on studies using representative data from the health reporting system. Our review shows that immigrants in Germany do not suffer from different diseases than non-immigrants, but they differ in their risk for certain diseases, in the resources to cope with theses risk and regarding access to treatment. We also identified the need for differentiation within the immigrant population, considering among others social and legal status, country of origin and duration of stay. Though most of the studies acknowledge the need for differentiation, the lack of data currently rules out analyses accounting for the existing diversity and thus a full understanding of health inequalities related to migration to Germany

    Metabolomics Applied to Diabetes Research: Moving From Information to Knowledge

    Get PDF
    Type 2 diabetes is caused by a complex set ofinteractions between genetic and environmentalfactors. Recent work has shown that human type2 diabetes is a constellation of disorders associ-ated with polymorphisms in a wide array of genes, with each individual gene accounting for 1 % of disease risk (1). Moreover, type 2 diabetes involves dysfunction of multiple organ systems, including impaired insulin action in muscle and adipose, defective control of hepatic glu-cose production, and insulin deficiency caused by loss of -cell mass and function (2). This complexity presents challenges for a full understanding of the molecular path-ways that contribute to the development of this major disease. Progress in this area may be aided by the recent advent of technologies for comprehensive metabolic anal-ysis, sometimes termed “metabolomics. ” Herein, we sum-marize key metabolomics methodologies, including nuclear magnetic resonance (NMR) and mass spectrome

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing

    Get PDF
    Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A–B56γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A–B56δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56γ and B56δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death

    RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions

    Get PDF
    BACKGROUND: Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS: A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5′-UTR, 3′-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5’-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3’-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37°C versus 28°C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49% and 51% similarity, and 16% and 17% identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION: Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species
    corecore