390 research outputs found
Foam-like compression behavior of fibrin networks
The rheological properties of fibrin networks have been of long-standing
interest. As such there is a wealth of studies of their shear and tensile
responses, but their compressive behavior remains unexplored. Here, by
characterization of the network structure with synchronous measurement of the
fibrin storage and loss moduli at increasing degrees of compression, we show
that the compressive behavior of fibrin networks is similar to that of cellular
solids. A non-linear stress-strain response of fibrin consists of three
regimes: 1) an initial linear regime, in which most fibers are straight, 2) a
plateau regime, in which more and more fibers buckle and collapse, and 3) a
markedly non-linear regime, in which network densification occurs {{by bending
of buckled fibers}} and inter-fiber contacts. Importantly, the spatially
non-uniform network deformation included formation of a moving "compression
front" along the axis of strain, which segregated the fibrin network into
compartments with different fiber densities and structure. The Young's modulus
of the linear phase depends quadratically on the fibrin volume fraction while
that in the densified phase depends cubically on it. The viscoelastic plateau
regime corresponds to a mixture of these two phases in which the fractions of
the two phases change during compression. We model this regime using a
continuum theory of phase transitions and analytically predict the storage and
loss moduli which are in good agreement with the experimental data. Our work
shows that fibrin networks are a member of a broad class of natural cellular
materials which includes cancellous bone, wood and cork
Dispositional free riders do not free ride on punishment
Strong reciprocity explains prosocial cooperation by the presence of individuals who incur costs to help those who helped them (‘strong positive reciprocity’) and to punish those who wronged them (‘strong negative reciprocity’). Theories of social preferences predict that in contrast to ‘strong reciprocators’, self-regarding people cooperate and punish only if there are sufficient future benefits. Here, we test this prediction in a two-stage design. First, participants are classified according to their disposition towards strong positive reciprocity as either dispositional conditional cooperators (DCC) or dispositional free riders (DFR). Participants then play a one-shot public goods game, either with or without punishment. As expected, DFR cooperate only when punishment is possible, whereas DCC cooperate without punishment. Surprisingly, dispositions towards strong positive reciprocity are unrelated to strong negative reciprocity: punishment by DCC and DFR is practically identical. The ‘burden of cooperation’ is thus carried by a larger set of individuals than previously assumed
Intrinsic honesty and the prevalence of rule violations across societies
Deception is common in nature and humans are no exception. Modern societies have created institutions to control cheating, but many situations remain where only intrinsic honesty keeps people from cheating and violating rules. Psychological, sociological and economic theories suggest causal pathways to explain how the prevalence of rule violations in people’s social environment, such as corruption, tax evasion or political fraud, can compromise individual intrinsic honesty. Here we present cross-societal experiments from 23 countries around the world that demonstrate a robust link between the prevalence of rule violations and intrinsic honesty. We developed an index of the ‘prevalence of rule violations’ (PRV) based on country-level data from the year 2003 of corruption, tax evasion and fraudulent politics. We measured intrinsic honesty in an anonymous die-rolling experiment. We conducted the experiments with 2,568 young participants (students) who, due to their young age in 2003, could not have influenced PRV in 2003. We find individual intrinsic honesty is stronger in the subject pools of low PRV countries than those of high PRV countries. The details of lying patterns support psychological theories of honesty. The results are consistent with theories of the cultural co-evolution of institutions and values, and show that weak institutions and cultural legacies that generate rule violations not only have direct adverse economic consequences, but might also impair individual intrinsic honesty that is crucial for the smooth functioning of society
Tournaments and piece rates revisited: a theoretical and experimental study of output-dependent prize tournaments
Tournaments represent an increasingly important component of organizational compensation systems. While prior research focused on fixed-prize tournaments where the prize to be awarded is set in advance, we introduce ‘output-dependent prizes’ where the tournament prize is endogenously determined by agents’ output—it is high when the output is high and low when the output is low. We show that tournaments with output-dependent prizes outperform fixed-prize tournaments and piece rates. A multi-agent experiment supports the theoretical result
A Flexible z-Tree Implementation of the Social Value Orientation Slider Measure (Murphy et al. 2011) – Manual
This manual describes a z-Tree (Fischbacher, 2007) implementation of the paper-based Social Vaule Orientation (SVO) Slider Measure by Murphy et al. (2011). Using the paper-based version instead of the slider-based version (as implemented on the SVO-Website) avoids server-traffic related delays we experienced in the latter implementation
Compression-induced structural and mechanical changes of fibrin-collagen composites
Fibrin and collagen as well as their combinations play an important biological role in tissue regeneration and are widely employed in surgery as fleeces or sealants and in bioengineering as tissue scaffolds. Earlier studies demonstrated that fibrin-collagen composite networks displayed improved tensile mechanical properties compared to the isolated protein matrices. Unlike previous studies, here unconfined compression was applied to a fibrin-collagen filamentous polymer composite matrix to study its structural and mechanical responses to compressive deformation. Combining collagen with fibrin resulted in formation of a composite hydrogel exhibiting synergistic mechanical properties compared to the isolated fibrin and collagen matrices. Specifically, the composite matrix revealed a one order of magnitude increase in the shear storage modulus at compressive strains>0.8 in response to compression compared to the mechanical features of individual components. These material enhancements were attributed to the observed structural alterations, such as network density changes, an increase in connectivity along with criss-crossing, and bundling of fibers. In addition, the compressed composite collagen/fibrin networks revealed a non-linear transformation of their viscoelastic properties with softening and stiffening regimes. These transitions were shown to depend on protein concentrations. Namely, a decrease in protein content drastically affected the mechanical response of the networks to compression by shifting the onset of stiffening to higher degrees of compression. Since both natural and artificially composed extracellular matrices experience compression in various (patho)physiological conditions, our results provide new insights into the structural biomechanics of the polymeric composite matrix that can help to create fibrin-collagen sealants, sponges, and tissue scaffolds with tunable and predictable mechanical properties
Quantitative structural mechanobiology of platelet-driven blood clot contraction
© 2017 The Author(s). Blood clot contraction plays an important role in prevention of bleeding and in thrombotic disorders. Here, we unveil and quantify the structural mechanisms of clot contraction at the level of single platelets. A key elementary step of contraction is sequential extension-retraction of platelet filopodia attached to fibrin fibers. In contrast to other cell-matrix systems in wh ich cells migrate along fibers, the "hand-over-hand" longitudinal pulling causes shortening and bending of platelet-attached fibers, resulting in formation of fiber kinks. When attached to multiple fibers, platelets densify the fibrin network by pulling on fibers transversely to their longitudinal axes. Single platelets and aggregates use actomyosin contractile machinery and integrin-mediated adhesion to remodel the extracellular matrix, inducing compaction of fibrin into bundled agglomerates tightly associated with activated platelets. The revealed platelet-driven mechanisms of blood clot contraction demonstrate an important new biological application of cell motility principles
- …
