53 research outputs found

    Fully Parallel Hyperparameter Search: Reshaped Space-Filling

    Full text link
    Space-filling designs such as scrambled-Hammersley, Latin Hypercube Sampling and Jittered Sampling have been proposed for fully parallel hyperparameter search, and were shown to be more effective than random or grid search. In this paper, we show that these designs only improve over random search by a constant factor. In contrast, we introduce a new approach based on reshaping the search distribution, which leads to substantial gains over random search, both theoretically and empirically. We propose two flavors of reshaping. First, when the distribution of the optimum is some known P0P_0, we propose Recentering, which uses as search distribution a modified version of P0P_0 tightened closer to the center of the domain, in a dimension-dependent and budget-dependent manner. Second, we show that in a wide range of experiments with P0P_0 unknown, using a proposed Cauchy transformation, which simultaneously has a heavier tail (for unbounded hyperparameters) and is closer to the boundaries (for bounded hyperparameters), leads to improved performances. Besides artificial experiments and simple real world tests on clustering or Salmon mappings, we check our proposed methods on expensive artificial intelligence tasks such as attend/infer/repeat, video next frame segmentation forecasting and progressive generative adversarial networks

    Noisy Optimization: Convergence with a Fixed Number of Resamplings

    Get PDF
    It is known that evolution strategies in continuous domains might not converge in the presence of noise. It is also known that, under mild assumptions, and using an increasing number of resamplings, one can mitigate the effect of additive noise and recover convergence. We show new sufficient conditions for the convergence of an evolutionary algorithm with constant number of resamplings; in particular, we get fast rates (log-linear convergence) provided that the variance decreases around the optimum slightly faster than in the so-called multiplicative noise model. Keywords: Noisy optimization, evolutionary algorithm, theory.Comment: EvoStar (2014

    Optimal estimation for Large-Eddy Simulation of turbulence and application to the analysis of subgrid models

    Get PDF
    The tools of optimal estimation are applied to the study of subgrid models for Large-Eddy Simulation of turbulence. The concept of optimal estimator is introduced and its properties are analyzed in the context of applications to a priori tests of subgrid models. Attention is focused on the Cook and Riley model in the case of a scalar field in isotropic turbulence. Using DNS data, the relevance of the beta assumption is estimated by computing (i) generalized optimal estimators and (ii) the error brought by this assumption alone. Optimal estimators are computed for the subgrid variance using various sets of variables and various techniques (histograms and neural networks). It is shown that optimal estimators allow a thorough exploration of models. Neural networks are proved to be relevant and very efficient in this framework, and further usages are suggested

    Direct model predictive control: A theoretical and numerical analysis

    Full text link
    This paper focuses on online control policies applied to power systems management. In this study, the power system problem is formulated as a stochastic decision process with large constrained action space, high stochasticity and dozens of state variables. Direct Model Predictive Control has previously been proposed to encompass a large class of stochastic decision making problems. It is a hybrid model which merges the properties of two different dynamic optimization methods, Model Predictive Control and Stochastic Dual Dynamic Programming. In this paper, we prove that Direct Model Predictive Control reaches an optimal policy for a wider class of decision processes than those solved by Model Predictive Control (suboptimal by nature), Stochastic Dynamic Programming (which needs a moderate size of state space) or Stochastic Dual Dynamic Programming (which requires convexity of Bellman values and a moderate complexity of the random value state). The algorithm is tested on a multiple-battery management problem and two hydroelectric problems. Direct Model Predictive Control clearly outperforms Model Predictive Control on the tested problems. © 2018 Power Systems Computation Conference

    The Hessian Estimation Evolution Strategy

    Full text link
    We present a novel black box optimization algorithm called Hessian Estimation Evolution Strategy. The algorithm updates the covariance matrix of its sampling distribution by directly estimating the curvature of the objective function. This algorithm design is targeted at twice continuously differentiable problems. For this, we extend the cumulative step-size adaptation algorithm of the CMA-ES to mirrored sampling. We demonstrate that our approach to covariance matrix adaptation is efficient by evaluation it on the BBOB/COCO testbed. We also show that the algorithm is surprisingly robust when its core assumption of a twice continuously differentiable objective function is violated. The approach yields a new evolution strategy with competitive performance, and at the same time it also offers an interesting alternative to the usual covariance matrix update mechanism

    An overview of population-based algorithms for multi-objective optimisation

    Get PDF
    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided

    Creating an Upper-Confidence-Tree program for Havannah

    Get PDF
    ... huge improvements in computer-Go. In this paper, we test the generality of the approach by experimenting on another game, Havannah, which is known for being especially difficult for computers. We show that the same results hold, with slight differences related to the absence of clearly known patterns for the game of Havannah, in spite of the fact that Havannah is more related to connection games like Hex than to territory games like Go
    • …
    corecore