687 research outputs found
Ferromagnetism in multi--band Hubbard models: From weak to strong Coulomb repulsion
We propose a new mechanism which can lead to ferromagnetism in Hubbard models
containing triangles with different on-site energies. It is based on an
effective Hamiltonian that we derive in the strong coupling limit. Considering
a one-dimensional realization of the model, we show that in the quarter-filled,
insulating case the ground-state is actually ferromagnetic in a very large
parameter range going from Tasaki's flat-band limit to the strong coupling
limit of the effective Hamiltonian. This result has been obtained using a
variety of analytical and numerical techniques. Finally, the same results are
shown to apply away from quarter-filling, in the metallic case.Comment: 12 pages, revtex, 12 figures,needs epsf and multicol style file
Superconductivity in the Hubbard model with correlated hopping: Slave-boson study
The slave boson mean-field studies of the ground state of the Hubbard model
with correlated hopping were performed. The approach qualitatively recovers the
exact results for the case of the hopping integral t equal to the correlated
hopping integral X. The phase diagram for the strongly correlated state with
only singly occupied sites, the weakly correlated state, where single and
double occupation is allowed, and for the superconducting state, was determined
for any values of X and any electron concentration n. At the half-filled band
(n=1) a direct transition from the superconductor to the Mott insulator was
found. In the region of strong correlations the superconducting solution is
stable for n close to 1, in contrast to the case of weak correlations, in which
superconductivity occurs at n close to 0 and n close to 2. We found also that
strong correlations change characteristics of the superconducting phase, e.g.
the gap in the excitation spectrum has a nonexponential dependence close to the
point of the phase transition.Comment: 13 pages, 24 Postscript figures (in 12 files
Ferromagnetism in the large-U Hubbard model
We study the Hubbard model on a hypercubic lattice with regard to the
possibility of itinerant ferromagnetism. The Dynamical Mean Field theory is
used to map the lattice model on an effective local problem, which is treated
with help of the Non Crossing Approximation. By investigating spin dependent
one-particle Green's functions and the magnetic susceptibility, a region with
nonvanishing ferromagnetic polarization is found in the limit . The
-T-phase diagram as well as thermodynamic quantities are discussed. The
dependence of the Curie temperature on the Coulomb interaction and the
competition between ferromagnetism and antiferromagnetism are studied in the
large limit of the Hubbard model.Comment: 4 pages, 5 figures, accepted for publication in Physical Review B,
Rapid Communication
Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems. II
We discuss physical properties of strongly correlated electron states for a
linear chain obtained with the help of the recently proposed new method
combining the exact diagonalization in the Fock space with an ab initio
readjustment of the single-particle orbitals in the correlated state. The
method extends the current discussion of the correlated states since the
properties are obtained with varying lattice spacing. The finite system of N
atoms evolves with the increasing interatomic distance from a Fermi-liquid-like
state into the Mott insulator. The criteria of the localization are discussed
in detail since the results are already convergent for N>=8. During this
process the Fermi-Dirac distribution gets smeared out, the effective band mass
increases by ~50%, and the spin-spin correlation functions reduce to those for
the Heisenberg antiferromagnet. Values of the microscopic parameters such as
the hopping and the kinetic-exchange integrals, as well as the magnitude of
both intra- and inter-atomic Coulomb and exchange interactions are calculated.
We also determine the values of various local electron-lattice couplings and
show that they are comparable to the kinetic exchange contribution in the
strong-correlation limit. The magnitudes of the dimerization and the zero-point
motion are also discussed. Our results provide a canonical example of a
tractable strongly correlated system with a precise, first-principle
description as a function of interatomic distance of a model system involving
all hopping integrals, all pair-site interactions, and the exact one-band
Wannier functions.Comment: 18 pages, REVTEX, submitted to Phys. Rev.
Towards an Asymptotic-Safety Scenario for Chiral Yukawa Systems
We search for asymptotic safety in a Yukawa system with a chiral
symmetry, serving as a toy model for the
standard-model Higgs sector. Using the functional RG as a nonperturbative tool,
the leading-order derivative expansion exhibits admissible non-Ga\ssian
fixed-points for which arise from a conformal threshold
behavior induced by self-balanced boson-fermion fluctuations. If present in the
full theory, the fixed-point would solve the triviality problem. Moreover, as
one fixed point has only one relevant direction even with a reduced hierarchy
problem, the Higgs mass as well as the top mass are a prediction of the theory
in terms of the Higgs vacuum expectation value. In our toy model, the fixed
point is destabilized at higher order due to massless Goldstone and fermion
fluctuations, which are particular to our model and have no analogue in the
standard model.Comment: 16 pages, 8 figure
Rab3D is critical for secretory granule maturation in PC12 cells.
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs
Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function
Phase Diagram of the Extended Hubbard Model with Correlated Hopping Interaction
A one-dimensional model of interacting electrons with on-site ,
nearest-neighbor , and correlated-hopping interaction is studied
at half-filling using the continuum-limit field theory approach. The ground
state phase diagram is obtained for a wide range of coupling constants. In
addition to the insulating spin- and charge-density wave phases for large
and , respectively, we identify bond-located ordered phases corresponding to
an enhanced Peierls instability in the system for ,
and to a staggered magnetization located on bonds between
sites for , . The general ground state phase
diagram including insulating, metallic, and superconducting phases is
discussed.Comment: 8 pages, 4 eps-figure
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
- …
