19 research outputs found

    Treatment of Helminth Co-Infection in Individuals with HIV-1: A Systematic Review of the Literature

    Get PDF
    Many people living in areas of the world most affected by the HIV/AIDS pandemic are also exposed to other common infections. Parasitic infections with helminths (intestinal worms) are common in Africa and affect over half of the population in some areas. There are plausible biological reasons why treating helminth infections in people with HIV may slow down the progression of HIV to AIDS. Thus, treating people with HIV for helminths in areas with a high prevalence of both HIV and helminth infections may be a feasible strategy to help people with HIV delay progression of their disease or initiation of antiretroviral therapy. After a comprehensive review of the available literature, we conclude that there is not enough evidence to determine whether treating helminth infections in people with HIV is beneficial

    Acute Schistosoma mansoni Infection Increases Susceptibility to Systemic SHIV Clade C Infection in Rhesus Macaques after Mucosal Virus Exposure

    Get PDF
    To test the hypothesis that infection with helmiths may increase host susceptibility to infection with HIV-1, we quantified the amount of a clade C simian-human immunodeficiency virus needed to infect rhesus macaques that had acute Schistosoma mansoni infections. Compared to control animals exposed to virus alone, monkeys with schistosomiasis required exposure to 17-fold lower levels of virus to become infected. The schistosome-infected monkeys also had significantly higher levels of initial virus replication and loss of a certain subset of memory T cells, both predictors of a more rapid progression to immune dysfunction. These results suggest that worm infections may increase the risk of becoming infected with HIV-1 among individuals with viral exposures. Furthermore, they support the idea that control programs for schistosomiasis and perhaps other parasitic worm infections may also be useful in helping to reduce the spread of HIV/AIDS in developing countries where helminths are endemic

    The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The convergent distribution of the Human Immunodeficiency Virus (HIV) and helminth infections has led to the suggestion that infection with helminths exacerbates the HIV epidemic in developing countries. In South Africa, it is estimated that 57% of the population lives in poverty and carries the highest burden of both HIV and helmith infections, however, the disease interactions are under-researched.</p> <p>Methods</p> <p>We employed both coproscopy and <it>Ascaris lumbricoides</it>-specific serum IgE to increase diagnostic sensitivity and to distinguish between different helminth infection phenotypes and their effects on immune responses in HIV co-infected individuals. Coproscopy was done by formol ether and Kato Katz methods. HIV positive and negative adults were stratified according to the presence or absence of <it>A. lumbricoides </it>and/or <it>Trichuris trichuria </it>eggs with or without elevated <it>Ascaris </it>IgE. Lymphocyte subsets were phenotyped by flow cytometry. Viral loads, serum total IgE and eosinophils were also analysed. Lymphocyte activation markers (CCR5, HLA-DR, CD25, CD38 and CD71) were determined. Non parametric statistics were used to describe differences in the variables between the subgroups.</p> <p>Results</p> <p>Helminth prevalence ranged between 40%-60%. Four distinct subgroups of were identified, and this included egg positive/high <it>Ascaris</it>-specific IgE (egg<sup>+</sup>IgE<sup>hi</sup>), egg positive/low IgE (egg<sup>+</sup>IgE<sup>lo</sup>), egg negative/high IgE (egg<sup>-</sup>IgE<sup>hi</sup>) and egg negative/low IgE (egg<sup>-</sup>IgE<sup>lo</sup>) individuals. The egg<sup>+</sup>IgE<sup>hi </sup>subgroup displayed lymphocytopenia, eosinophilia, (low CD4<sup>+ </sup>counts in HIV<sup>- </sup>group), high viral load (in HIV<sup>+ </sup>group), and an activated lymphocyte profile. High <it>Ascaris </it>IgE subgroups (egg<sup>+</sup>IgE<sup>hi </sup>and egg<sup>-</sup>IgE<sup>hi</sup>) had eosinophilia, highest viral loads, and lower CD4<sup>+ </sup>counts in the HIV<sup>- </sup>group). Egg excretion and low IgE (egg<sup>+</sup>IgE<sup>lo</sup>) status demonstrated a modified Th<sub>2 </sub>immune profile with a relatively competent response to HIV.</p> <p>Conclusions</p> <p>People with both helminth egg excretion and high <it>Ascaris</it>-IgE levels had dysregulated immune cells, high viral loads with more immune activation. A modified Th<sub>2 </sub>helminth response in individuals with egg positive stools and low <it>Ascaris </it>IgE showed a better HIV related immune profile. Future research on helminth-HIV co-infection should include parasite-specific IgE measurements in addition to coproscopy to delineate the different response phenotypes. Helminth infection affects the immune response to HIV in some individuals with high IgE and egg excretion in stool.</p

    Helminth-Associated Systemic Immune Activation and HIV Co-receptor Expression: Response to Albendazole/Praziquantel Treatment

    Get PDF
    Background: It has been hypothesized that helminth infections increase HIV susceptibility by enhancing systemic immune activation and hence contribute to elevated HIV-1 transmission in sub-Saharan Africa. Objective: To study systemic immune activation and HIV-1 co-receptor expression in relation to different helminth infections and in response to helminth treatment. Methods: HIV-negative adults with (n = 189) or without (n = 57) different helminth infections, as diagnosed by Kato-Katz, were enrolled in Mbeya, Tanzania. Blinded to helminth infection status, T cell differentiation (CD45RO, CD27),activation (HLA-DR, CD38) and CCR5 expression was determined at baseline and 3 months after Albendazole/Praziquantel treatment. Plasma cytokine levels were compared using a cytometric bead array. Results: Trichuris and Ascaris infections were linked to increased frequencies of "activated'' CD4 and/or CD8 T cells (p< 0.05),whereas Hookworm infection was associated with a trend towards decreased HLA-DR+ CD8 T cell frequencies (p = 0.222). In Trichuris infected subjects, there was a linear correlation between HLA-DR+ CD4 T cell frequencies and the cytokines IL-1 beta and IL-10 (p<0.05). Helminth treatment with Albendazole and Praziquantel significantly decreased eosinophilia for S. mansoni and Hookworm infections (p<0.005) but not for Trichuris infection and only moderately modulated T cell activation. CCR5 surface density on memory CD4 T cells was increased by 1.2-fold during Trichuris infection (p-value: 0.053) and reduced after treatment (p = 0.003). Conclusions: Increased expression of T cell activation markers was associated with Trichuris and Ascaris infections with relatively little effect of helminth treatment

    Interactions between schistosomiasis and human immunodeficiency virus in Western Kenya

    No full text
    For the past ten years, we have been exploring the relationship between schistosomiasis and human immunodeficiency virus (HIV-1) and how coinfection with both agents may affect the pathology and progression of each infection. To date, given the systems we have examined, the effects of HIV-1 on schistosomiasis have been more profound than the effects of schistosomiasis on HIV-1 progression. Additional key questions with important public health implications remain unanswered, but hopefully not unanswerable
    corecore