1,331 research outputs found
The Path Integral for 1+1-dimensional QCD
We derive a path integral expression for the transition amplitude in
1+1-dimensional QCD starting from canonically quantized QCD. Gauge fixing after
quantization leads to a formulation in terms of gauge invariant but curvilinear
variables. Remainders of the curved space are Jacobians, an effective
potential, and sign factors just as for the problem of a particle in a box.
Based on this result we derive a Faddeev-Popov like expression for the
transition amplitude avoiding standard infinities that are caused by
integrations over gauge equivalent configurations.Comment: 16 pages, LaTeX, 3 PostScript figures, uses epsf.st
SNAI transcription factors mediate epithelial--mesenchymal transition in lung fibrosis
Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterised by accumulation of activated (myo)fibroblasts and excessive extracellular matrix deposition. The enhanced accumulation of (myo)fibroblasts may be attributed, in part, to the process of transforming growth factor \textgreekb1 (TGF\textgreekb1)-induced epithelial--mesenchymal transition (EMT), the phenotypic switching of epithelial to fibroblast-like cells. Although alveolar epithelial type II (ATII) cells have been shown to undergo EMT, the precise mediators and mechanisms remain to be resolved. The objective of this study is to investigate the role of SNAI transcription factors in the process of EMT and in IPF.Methods: Using quantitative reverse transcription-PCR (RT-PCR), immunofluorescence, immunohistochemistry, western blotting, as well as gain- and loss-of-function studies and functional assays, the role of SNAI1 and SNAI2 in TGF\textgreekb1-induced EMT in ATII cells in vitro was assessed; and the expression of SNAI transcription factors was analysed in experimental and human IPF in vivo.Results: TGF\textgreekb1 treatment increased the expression and nuclear accumulation of SNAI1 and SNAI2, in concert with induction of EMT in ATII cells. SNAI overexpression was sufficient to induce EMT, and small interfering RNA (siRNA)-mediated SNAI depletion attenuated TGF\textgreekb1-induced ATII cell migration and EMT. SNAI expression was elevated in experimental and human IPF and localised to hyperplastic ATII cells in vivo.Conclusions: The results demonstrate that TGF\textgreekb1-induced EMT in ATII cells is essentially controlled by the expression and nuclear translocation of SNAI transcription factors. Increased SNAI1 and SNAI2 expression in experimental and human IPF in vivo suggests that SNAI-mediated EMT may contribute to the fibroblast pool in idiopathic pulmonary fibrosis
Identification of main contributions to conductivity of epitaxial InN
Complex effect of different contributions (spontaneously formed In
nanoparticles, near-interface, surface and bulk layers) on electrophysical
properties of InN epitaxial films is studied. Transport parameters of the
surface layer are determined from the Shubnikov-de Haas oscillations measured
in undoped and Mg-doped InN films at magnetic fields up to 63 T. It is shown
that the In nanoparticles, near-interface and bulk layers play the dominant
role in the electrical conductivity of InN, while influence of the surface
layer is pronounced only in the compensated low-mobility InN:Mg films
Action Research in The Time of COVID-19
This study provides a picture of the impact the novel Coronavirus (COVID-19) had on action research performed by graduate students at a small Midwest university. A qualitative case study was conducted to examine how the participantsâ abilities to implement their research, gather data, and analyze the results was impacted by COVID-19. Participants were asked a series of questions regarding modifications made, the impact to the research that was done, the impact to their findings, and implications for future research. Based on the responses to these surveys, researchers determined four prominent themes; altered timelines, limited access to data and materials, quality of academic work, and long term impacts. Overall, while most participants were impacted by COVID-19, few were discouraged. Considering the research findings of this study, education can greatly be enhanced by a shift in mindset about the processes of teaching and lessons learned by the pandemic
Multi-Step Processing of Spatial Joins
Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last yearâs conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by
the following two steps. First of all, sophisticated approximations
are used to identify answers as well as to filter out false hits from
the set of candidates. For this purpose, we investigate various types
of conservative and progressive approximations. In the last step, the
exact geometry of the remaining candidates has to be tested against
the join predicate. The time required for computing spatial join
predicates can essentially be reduced when objects are adequately
organized in main memory. In our approach, objects are first decomposed
into simple components which are exclusively organized
by a main-memory resident spatial data structure. Overall, we
present a complete approach of spatial join processing on complex
spatial objects. The performance of the individual steps of our approach
is evaluated with data sets from real cartographic applications.
The results show that our approach reduces the total execution
time of the spatial join by factors
Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization
Author summary The intestinal epithelium is a crucial biological interface, interacting with both commensal and pathogenic microorganisms. Itâs lined with heavily glycosylated proteins and glycolipids which can act as both attachment sites and energy sources for intestinal bacteria. Fut2, the enzyme governing epithelial α1,2-fucosylation, has been implicated in the interaction between microbes and intestinal epithelial cells. Salmonella is one of the most important bacterial gastrointestinal pathogens affecting millions of people worldwide. Salmonella possesses fimbrial and non-fimbrial adhesins which can be used to adhere to host cells. Here we show that Salmonella expresses Std fimbriae in the gastrointestinal tract in vivo and exploit Std fimbriae to bind fucosylated structures in the mucus and on the intestinal epithelium. Furthermore, we demonstrate that the Std fimbriae-fucose interaction is necessary for bacterial colonization of the intestine and for triggering intestinal inflammation. These data lend new insights into bacterial adhesion-epithelial interactions which are essential for bacterial pathogenesis and key factors in determining tissue tropism and host susceptibility to infectious disease
Efficient Processing of Spatial Joins Using R-Trees
Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems
Theory of Electron Spin Relaxation in ZnO
Doped ZnO is a promising material for spintronics applications. For such
applications, it is important to understand the spin dynamics and particularly
the spin coherence of this II-VI semiconductor. The spin lifetime
has been measured by optical orientation experiments, and it shows a surprising
non-monotonic behavior with temperature. We explain this behavior by invoking
spin exchange between localized and extended states. Interestingly, the effects
of spin-orbit coupling are by no means negligible, in spite of the relatively
small valence band splitting. This is due to the wurtzite crystal structure of
ZnO. Detailed analysis allows us to characterize the impurity binding energies
and densities, showing that optical orientation experiments can be used as a
characterization tool for semiconductor samples.Comment: 7 pages, 1 figure: minor changes Accepted by Phys. Rev.
- âŠ