43 research outputs found

    Meiotic chromosomes and nucleolar behavior in testicular cells of the grassland spittlebugs Deois flavopicta, Mahanarva fimbriolata and Notozulia entreriana (Hemiptera, Auchenorrhyncha)

    Get PDF
    Spittlebugs annually infest pastures and cause severe damage, representing a serious problem for the tropical American beef cattle industry. Spittlebugs are an important biotic constraint to forage production and there is a lack of cytogenetic data for this group of insects. For these reasons, we conducted this work, in which the spermatogenesis and nucleolar behavior of Deois flavopicta, Mahanarva fimbriolata and Notozulia entreriana were studied. The males possessed testes in the shape of a “bunch of grapes”; a variable number of testicular lobes per individual and polyploid nuclei composed of several heteropycnotic bodies. A heteropycnotic area was located in the periphery of the nucleus (prophase I); the chiasmata were terminal or interstitial; metaphases I were circular or linear and anaphase showed late migration of the sex chromosome. The chromosome complement had 2n = 19, except for N. entreriana (2n = 15); the spermatids were round with heteropycnotic material in the center and elongated with conspicuos chromatin. The analysis of testes after silver nitrate staining showed polyploid nuclei with three large and three smaller nucleolar bodies. Early prophase cells had an intensely stained nucleolar body located close to the chromatin and another less evident body located away from the chromatin. The nucleolar bodies disintegrated during diplotene. Silver staining occurred in two autosomes, in terminal and subterminal locations, the latter probably corresponding to the nucleolus organizer regions (NORs). The spermatids were round with a round nucleolar body and silver staining was observed in the medial and posterior region of the elongated part of the spermatid head

    A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations

    Get PDF
    Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse

    The dynamics of place-based virtual communities : social media in a region in transition

    No full text
    Social media is a key platform through which communities can organise, connect and communicate. As such we argue that it can provide insight into how regional places and communities are imagined through digital platforms. Social media platforms like Facebook provide a way for researchers to map the virtual geography of real places. Often place-based community activity on social networks sites is a response to transition and change. Social media provides us with a way to assess and measure the community’s response to change and crisis. This chapter will explore the ways in which digital social research methods can enhance understandings of place-based regional identities during and after times of crisis. We examine a case study from the Latrobe Valley in regional Victoria to consider how Facebook in particular provides a window to the complicated affective relationships to place that emerge in times of crisis and strife. © The Author(s) 2020
    corecore